Back to Search Start Over

A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma

Authors :
Cinzia Lavarino
Alícia Garrido-Garcia
Volker Hovestadt
Andres Morales La Madrid
Ofelia Cruz
Michael D. Taylor
Soledad Gómez
Jose-Ignacio Martin-Subero
Betty Luu
Stella Dracheva
Alexey Kozlenkov
Sara Perez-Jaume
Laura Garcia-Gerique
Pascal Johann
Isadora Lemos
Angel M. Carcaboso
Mark W. Kieran
David T.W. Jones
Mariona Suñol
Carmen de Torres
Vijay Ramaswamy
Marta Kulis
Nada Jabado
Stefan M. Pfister
Jaume Mora
Source :
CLINICAL CANCER RESEARCH, r-FSJD. Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu, instname, r-FSJD: Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu, Fundació Sant Joan de Déu
Publication Year :
2018
Publisher :
AMER ASSOC CANCER RESEARCH, 2018.

Abstract

Purpose: The classification of medulloblastoma into WNT, SHH, group 3, and group 4 subgroups has become of critical importance for patient risk stratification and subgroup-tailored clinical trials. Here, we aimed to develop a simplified, clinically applicable classification approach that can be implemented in the majority of centers treating patients with medulloblastoma. Experimental Design: We analyzed 1,577 samples comprising previously published DNA methylation microarray data (913 medulloblastomas, 457 non-medulloblastoma tumors, 85 normal tissues), and 122 frozen and formalin-fixed paraffin-embedded medulloblastoma samples. Biomarkers were identified applying stringent selection filters and Linear Discriminant Analysis (LDA) method, and validated using DNA methylation microarray data, bisulfite pyrosequencing, and direct-bisulfite sequencing. Results: Using a LDA-based approach, we developed and validated a prediction method (EpiWNT-SHH classifier) based on six epigenetic biomarkers that allowed for rapid classification of medulloblastoma into the clinically relevant subgroups WNT, SHH, and non-WNT/non-SHH with excellent concordance (>99%) with current gold-standard methods, DNA methylation microarray, and gene signature profiling analysis. The EpiWNT-SHH classifier showed high prediction capacity using both frozen and formalin-fixed material, as well as diverse DNA methylation detection methods. Similarly, we developed a classifier specific for group 3 and group 4 tumors, based on five biomarkers (EpiG3-G4) with good discriminatory capacity, allowing for correct assignment of more than 92% of tumors. EpiWNT-SHH and EpiG3-G4 methylation profiles remained stable across tumor primary, metastasis, and relapse samples. Conclusions: The EpiWNT-SHH and EpiG3-G4 classifiers represent a new simplified approach for accurate, rapid, and cost-effective molecular classification of single medulloblastoma DNA samples, using clinically applicable DNA methylation detection methods. Clin Cancer Res; 24(6); 1355–63. ©2018 AACR.

Details

ISSN :
10780432
Database :
OpenAIRE
Journal :
CLINICAL CANCER RESEARCH, r-FSJD. Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu, instname, r-FSJD: Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu, Fundació Sant Joan de Déu
Accession number :
edsair.doi.dedup.....69cfcd8ce28aa07a2bae36cffea854ce