Back to Search
Start Over
A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma
- Source :
- CLINICAL CANCER RESEARCH, r-FSJD. Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu, instname, r-FSJD: Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu, Fundació Sant Joan de Déu
- Publication Year :
- 2018
- Publisher :
- AMER ASSOC CANCER RESEARCH, 2018.
-
Abstract
- Purpose: The classification of medulloblastoma into WNT, SHH, group 3, and group 4 subgroups has become of critical importance for patient risk stratification and subgroup-tailored clinical trials. Here, we aimed to develop a simplified, clinically applicable classification approach that can be implemented in the majority of centers treating patients with medulloblastoma. Experimental Design: We analyzed 1,577 samples comprising previously published DNA methylation microarray data (913 medulloblastomas, 457 non-medulloblastoma tumors, 85 normal tissues), and 122 frozen and formalin-fixed paraffin-embedded medulloblastoma samples. Biomarkers were identified applying stringent selection filters and Linear Discriminant Analysis (LDA) method, and validated using DNA methylation microarray data, bisulfite pyrosequencing, and direct-bisulfite sequencing. Results: Using a LDA-based approach, we developed and validated a prediction method (EpiWNT-SHH classifier) based on six epigenetic biomarkers that allowed for rapid classification of medulloblastoma into the clinically relevant subgroups WNT, SHH, and non-WNT/non-SHH with excellent concordance (>99%) with current gold-standard methods, DNA methylation microarray, and gene signature profiling analysis. The EpiWNT-SHH classifier showed high prediction capacity using both frozen and formalin-fixed material, as well as diverse DNA methylation detection methods. Similarly, we developed a classifier specific for group 3 and group 4 tumors, based on five biomarkers (EpiG3-G4) with good discriminatory capacity, allowing for correct assignment of more than 92% of tumors. EpiWNT-SHH and EpiG3-G4 methylation profiles remained stable across tumor primary, metastasis, and relapse samples. Conclusions: The EpiWNT-SHH and EpiG3-G4 classifiers represent a new simplified approach for accurate, rapid, and cost-effective molecular classification of single medulloblastoma DNA samples, using clinically applicable DNA methylation detection methods. Clin Cancer Res; 24(6); 1355–63. ©2018 AACR.
- Subjects :
- Epigenomics
Male
0301 basic medicine
Cancer Research
Microarray
Biopsy
Computational biology
Biology
Epigenesis, Genetic
Metastasis
03 medical and health sciences
0302 clinical medicine
Biomarkers, Tumor
medicine
Humans
Genetic Predisposition to Disease
Cerebellar Neoplasms
Genetic Association Studies
Medulloblastoma
Microarray analysis techniques
Gene Expression Profiling
Reproducibility of Results
Methylation
DNA Methylation
Gene signature
medicine.disease
Gene expression profiling
030104 developmental biology
Oncology
030220 oncology & carcinogenesis
DNA methylation
CpG Islands
Female
Subjects
Details
- ISSN :
- 10780432
- Database :
- OpenAIRE
- Journal :
- CLINICAL CANCER RESEARCH, r-FSJD. Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu, instname, r-FSJD: Repositorio Institucional de Producción Científica de la Fundació Sant Joan de Déu, Fundació Sant Joan de Déu
- Accession number :
- edsair.doi.dedup.....69cfcd8ce28aa07a2bae36cffea854ce