Back to Search Start Over

Hybrid Nanomaterial of Graphene Oxide Quantum Dots with Multi-Walled Carbon Nanotubes for Simultaneous Voltammetric Determination of Four DNA Bases

Authors :
Qusai Hassan
Chevon Riley
Meissam Noroozifar
Kagan Kerman
Source :
Nanomaterials; Volume 13; Issue 9; Pages: 1509
Publication Year :
2023
Publisher :
Multidisciplinary Digital Publishing Institute, 2023.

Abstract

In this proof-of-concept study, a novel hybrid nanomaterial-based electrochemical sensor was developed for the simultaneous detection of four DNA bases. For the modification of the working electrode surface, graphene oxide quantum dots (GOQDs) were synthesized using a solvothermal method. GOQDs were then used for the preparation of a hybrid nanomaterial with multi-walled carbon nanotubes (GOQD-MWCNT) using a solvothermal technique for the first time. Transmission electron microscopy (TEM) was used to characterize the GOQDs-MWCNTs. A glassy carbon electrode (GCE) was modified with the GOQDs-MWCNTs using Nafion™ to prepare a GOQD-MWCNT/GCE for the simultaneous determination of four DNA bases in phosphate buffer solution (PBS, pH 7.0) using differential pulse voltammetry (DPV). The calibration plots were linear up to 50, 50, 500, and 500 µM with a limit of detection at 0.44, 0.2, 1.6, and 5.6 µM for guanine (G), adenine (A), thymine (T) and cytosine (C), respectively. The hybrid-modified sensor was used for the determination of G, A, T, and C spiked in the artificial saliva samples with the recovery values ranging from 95.9 to 106.8%. This novel hybrid-modified electrochemical sensor provides a promising platform for the future development of a device for cost-effective and efficient simultaneous detection of DNA bases in real biological and environmental samples.

Details

Language :
English
ISSN :
20794991
Database :
OpenAIRE
Journal :
Nanomaterials; Volume 13; Issue 9; Pages: 1509
Accession number :
edsair.doi.dedup.....6a1503266bacdf988db763fa6c2d1af0
Full Text :
https://doi.org/10.3390/nano13091509