Back to Search
Start Over
DEXTER: Disease-Expression Relation Extraction from Text
- Source :
- Database: The Journal of Biological Databases and Curation
- Publication Year :
- 2017
-
Abstract
- Gene expression levels affect biological processes and play a key role in many diseases. Characterizing expression profiles is useful for clinical research, and diagnostics and prognostics of diseases. There are currently several high-quality databases that capture gene expression information, obtained mostly from large-scale studies, such as microarray and next-generation sequencing technologies, in the context of disease. The scientific literature is another rich source of information on gene expression–disease relationships that not only have been captured from large-scale studies but have also been observed in thousands of small-scale studies. Expression information obtained from literature through manual curation can extend expression databases. While many of the existing databases include information from literature, they are limited by the time-consuming nature of manual curation and have difficulty keeping up with the explosion of publications in the biomedical field. In this work, we describe an automated text-mining tool, Disease-Expression Relation Extraction from Text (DEXTER) to extract information from literature on gene and microRNA expression in the context of disease. One of the motivations in developing DEXTER was to extend the BioXpress database, a cancer-focused gene expression database that includes data derived from large-scale experiments and manual curation of publications. The literature-based portion of BioXpress lags behind significantly compared to expression information obtained from large-scale studies and can benefit from our text-mined results. We have conducted two different evaluations to measure the accuracy of our text-mining tool and achieved average F-scores of 88.51 and 81.81% for the two evaluations, respectively. Also, to demonstrate the ability to extract rich expression information in different disease-related scenarios, we used DEXTER to extract information on differential expression information for 2024 genes in lung cancer, 115 glycosyltransferases in 62 cancers and 826 microRNA in 171 cancers. All extractions using DEXTER are integrated in the literature-based portion of BioXpress. Database URL: http://biotm.cis.udel.edu/DEXTER
- Subjects :
- 0301 basic medicine
Lung Neoplasms
Computer science
MEDLINE
Context (language use)
Computational biology
Scientific literature
General Biochemistry, Genetics and Molecular Biology
Field (computer science)
03 medical and health sciences
Databases, Genetic
Data Mining
Humans
RNA, Neoplasm
Regulation of gene expression
Glycosyltransferases
Relationship extraction
Databases, Bibliographic
3. Good health
Neoplasm Proteins
Gene Expression Regulation, Neoplastic
MicroRNAs
030104 developmental biology
Expression (architecture)
Prognostics
Original Article
General Agricultural and Biological Sciences
Information Systems
Subjects
Details
- ISSN :
- 17580463
- Volume :
- 2018
- Database :
- OpenAIRE
- Journal :
- Database : the journal of biological databases and curation
- Accession number :
- edsair.doi.dedup.....6a5ac3b731a91a06966183bd3ed73557