Back to Search Start Over

Probing Ultrafast Magnetic-Field Generation by Current Filamentation Instability in Femtosecond Relativistic Laser-Matter Interactions

Authors :
O. Kononenko
A. Martinez de la Ossa
J. P. Couperus Cabadağ
Bernhard Hidding
Ulrich Schramm
Alexander Debus
S. Schöbel
Laurent Gremillet
Y-Y Chang
Stefan Karsch
Max Gilljohann
A. Siciak
Arie Irman
T. Kurz
Xavier Davoine
P. San Miguel Claveria
C. Caizergues
Klaus Steiniger
A. Döpp
H. Ding
Gaurav Raj
Richard Pausch
Antoine Doche
S. Corde
M. Förster
A. Tafzi
Thomas Kluge
T. Heinemann
Pascal Rousseau
S. Yu
J-P Goddet
Laboratoire d'optique appliquée (LOA)
Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
Direction des Applications Militaires (DAM)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
European Project: M-PAC
Source :
Physical Review Research, Physical Review Research, 2020, 2, pp.023123. ⟨10.1103/PhysRevResearch.2.023123⟩, Physical Review Research, American Physical Society, 2020, 2, pp.023123. ⟨10.1103/PhysRevResearch.2.023123⟩, Physical Review Research 2(2020), 023123, Phys.Rev.Res., Phys.Rev.Res., 2020, 2 (2), pp.023123
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; The current filamentation instability is a key phenomenon underpinning various processes in astrophysics, laboratory laser-plasma, and beam-plasma experiments. Here we show that the ultrafast dynamics of this instability can be explored in the context of relativistic laser-solid interactions through deflectometry by low-emittance, highly relativistic electron bunches from a laser wakefield accelerator. We present experimental measurements of the femtosecond timescale generation of strong magnetic-field fluctuations, with a measured line-integrated B field of 2.70 ± 0.39 kT μm. Three-dimensional, fully relativistic particle-in-cell simulations demonstrate that such fluctuations originate from the current filamentation instability arising at submicron scales around the irradiated target surface, and that they grow to amplitudes strong enough to broaden the angular distribution of the probe electron bunch a few tens of femtoseconds after the laser pulse maximum. Our results open a branch of physics experiments investigating the femtosecond dynamics of laser-driven plasma instabilities by means of synchronized, wakefield-accelerated electron beams.

Details

Language :
English
ISSN :
26431564
Database :
OpenAIRE
Journal :
Physical Review Research, Physical Review Research, 2020, 2, pp.023123. ⟨10.1103/PhysRevResearch.2.023123⟩, Physical Review Research, American Physical Society, 2020, 2, pp.023123. ⟨10.1103/PhysRevResearch.2.023123⟩, Physical Review Research 2(2020), 023123, Phys.Rev.Res., Phys.Rev.Res., 2020, 2 (2), pp.023123
Accession number :
edsair.doi.dedup.....6ab46051109c2734c872dae987db023f
Full Text :
https://doi.org/10.1103/PhysRevResearch.2.023123⟩