Back to Search Start Over

Subcellular localization of glucose transporter 4 in the hypothalamic arcuate nucleus of ob/ob mice under basal conditions

Authors :
Kishio Nanjo
Yoshihiro Morikawa
Tadasuke Komori
Asako Doi
Shinobu Tamura
Emiko Senba
Source :
Brain Research. 1049:34-42
Publication Year :
2005
Publisher :
Elsevier BV, 2005.

Abstract

Glucose transporter (GLUT) 4 plays an important role in insulin-induced glucose uptake in skeletal muscle and white adipose tissue. Although GLUT4 is abundant in the hypothalamus as well as in these peripheral tissues, little is known about the role of GLUT4 in the hypothalamus. In this study, we examined the subcellular localization of GLUT4 and the activation of insulin signaling pathways in the hypothalamic arcuate nucleus of ob/ob mice under basal conditions. The expression of GLUT4 in the arcuate nucleus of ob/ob mice was higher than that in lean mice. Interestingly, GLUT4 on the plasma membrane increased significantly in neurons of the arcuate nucleus of ob/ob mice when compared to that in lean mice. Because serum insulin levels of ob/ob mice were very high, we hypothesized that insulin strongly stimulates GLUT4 translocation in the arcuate nucleus of ob/ob mice. Unexpectedly, tyrosine phosphorylation of IR and insulin receptor substrate-1 (IRS-1) was faint in the hypothalamus of lean and ob/ob mice. In addition, phosphorylation of IRS-1 at Ser307 in the hypothalamus of ob/ob mice was higher when compared to that in lean mice, suggesting that insulin signaling is impaired by phosphorylation of IRS-1 at Ser307 in the hypothalamus of ob/ob mice. However, serine phosphorylation of Akt in the arcuate nucleus of ob/ob mice increased significantly when compared to that in lean mice. Furthermore, the expression of brain-derived neurotrophic factor, an activator of PI3K-Akt pathway in neurons, increased significantly in the ventromedial hypothalamus of ob/ob mice. We discuss the possibility of novel pathways which induce the translocation of GLUT4 in the arcuate nucleus of ob/ob mice.

Details

ISSN :
00068993
Volume :
1049
Database :
OpenAIRE
Journal :
Brain Research
Accession number :
edsair.doi.dedup.....6ab54b89b090cca1434b411be22dcbe5