Back to Search
Start Over
Synthesis of a poly(sulfobetaine-co-polyhedral oligomeric silsesquioxane) hybrid monolith via an in-situ ring opening quaternization for use in hydrophilic interaction capillary liquid chromatography
- Source :
- Microchimica Acta. 187
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- An in-situ approach is described for synthesis of poly(sulfobetaine-co-polyhedral oligomeric silsesquioxane) [poly(sulfobetaine-co-POSS)] that can be used in a hybrid monolithic column as a hydrophilic liquid chromatography (HILIC) stationary phase. Synthesis involves (a) radical polymerization of octa(propyl methacrylate)-polyhedral oligomeric silsesquioxane (MA-POSS) and organic monomers such as dimethylaminopropyl methacrylate or vinyl imidazole, and (b) in-situ ring-opening quaternization between 1,4-butane sultone and the organic monomers. The sulfobetaine groups are generated in-situ monolith. This obviates the need for synthesis of sulfobetaine monomer previously. The pore size and permeability of the material can be tuned by using a binary porogenic system (polyethyleneglycol 600 and acetonitrile) and via the composition of the polymerization mixture. The optimized hybrid monolith owns its merits to the presence of POSS and sulfobetaine groups with good mechanical stability, the lack of residual silanol groups, and adequate hydrophilicity. The column filled with the monoliths was evaluated as a stationary phase for HILIC. Several kinds of polar compounds (including nucleosides, bases, phenols, aromatic acids and amides) were separated by using mobile phases with high organic solvent fractions in capillary liquid chromatography. Graphical abstractAn in-situ approach is described for synthesis of poly(sulfobetaine-co-polyhedral oligomeric silsesquioxane) hybrid monolithic column for use in hydrophilic liquid chromatography. The optimized monolith owns good mechanical stability, the lack of residual silanol groups and adequate hydrophilicity. Baseline separation of several kinds of polar compounds is achieved on the column. MA-POSS: octa(propyl-methacrylate) polyhedral oligomeric silsesquioxane; DMAEMA: dimethylaminoethyl methacrylate; AIBN: azodiisobutyronitrile. Poly(DMABS-co-POSS): poly(N-(4-sulfobutyl)-N-methacryloxypropyl- N,N-dimethylammonium-betaine-co-polyhedral oligomeric silsesquioxane).
- Subjects :
- geography
geography.geographical_feature_category
Chromatography
Monolithic HPLC column
Chemistry
Hydrophilic interaction chromatography
010401 analytical chemistry
Radical polymerization
010402 general chemistry
Methacrylate
01 natural sciences
Silsesquioxane
0104 chemical sciences
Analytical Chemistry
chemistry.chemical_compound
Silanol
Polymerization
Monolith
Subjects
Details
- ISSN :
- 14365073 and 00263672
- Volume :
- 187
- Database :
- OpenAIRE
- Journal :
- Microchimica Acta
- Accession number :
- edsair.doi.dedup.....6ac73a8848c4bbc4315d7e537a8954e0
- Full Text :
- https://doi.org/10.1007/s00604-019-4088-z