Back to Search
Start Over
Oxidising and carburising catalyst conditioning for the controlled growth and transfer of large crystal monolayer hexagonal boron nitride
- Source :
- 2D Materials
- Publication Year :
- 2019
- Publisher :
- IOP Publishing, 2019.
-
Abstract
- Funder: H2020 Marie Skłodowska-Curie Actions; doi: https://doi.org/10.13039/100010665<br />Hexagonal boron nitride (h-BN) is well-established as a requisite support, encapsulant and barrier for 2D material technologies, but also recently as an active material for applications ranging from hyperbolic metasurfaces to room temperature single-photon sources. Cost-effective, scalable and high quality growth techniques for h-BN layers are critically required. We utilise widely-available iron foils for the catalytic chemical vapour deposition (CVD) of h BN and report on the significant role of bulk dissolved species in h-BN CVD, and specifically, the balance between dissolved oxygen and carbon. A simple pre-growth conditioning step of the iron foils enables us to tailor an error-tolerant scalable CVD process to give exceptionally large h-BN monolayer domains. We also develop a facile method for the improved transfer of as-grown h-BN away from the iron surface by means of the controlled humidity oxidation and subsequent rapid etching of a thin interfacial iron oxide; thus, avoiding the impurities from the bulk of the foil. We demonstrate wafer-scale (2 inch) production and utilise this h-BN as a protective layer for graphene towards integrated (opto) electronic device fabrication.<br />European Union's Horizon 2020 research and innovation program under Grant Agreement No number 785219. European Union's Horizon 2020 research and innovation program under Grant Agreement No number 796388. the Royal Commission for the Exhibition of 1851. EU Marie Skłodowska-Curie Individual Fellowship (Global) under grant ARTIST (No. 656870). EPSRC (EP/P005152/1, and Doctoral Training Award EP/M508007/1). U.K. Department of Business, Energy and Industrial Strategy (NPL Project Number 121452).
- Subjects :
- Paper
Materials science
Fabrication
Iron oxide
FOS: Physical sciences
02 engineering and technology
010402 general chemistry
01 natural sciences
law.invention
chemical vapor deposition
chemistry.chemical_compound
Impurity
law
Etching (microfabrication)
monolayer
Monolayer
General Materials Science
hexagonal boron nitride
FOIL method
Condensed Matter - Materials Science
Focus on Scalable Encapsulation of 2D Materials
Graphene
Mechanical Engineering
large crystal
Materials Science (cond-mat.mtrl-sci)
General Chemistry
021001 nanoscience & nanotechnology
Condensed Matter Physics
2D materials
0104 chemical sciences
Chemical engineering
chemistry
Mechanics of Materials
encapsulation
0210 nano-technology
Layer (electronics)
transfer
Subjects
Details
- Language :
- English
- ISSN :
- 09574484, 05435722, and 00214922
- Database :
- OpenAIRE
- Journal :
- 2D Materials
- Accession number :
- edsair.doi.dedup.....6b4c359a9a58e6c8822a9a2e2a17f1a8
- Full Text :
- https://doi.org/10.1088/2053-1583/ab6269