Back to Search
Start Over
Xenopus laevis tadpoles can regenerate neural retina lost after physical excision but cannot regenerate photoreceptors lost through targeted ablation
- Source :
- Investigative ophthalmologyvisual science. 54(3)
- Publication Year :
- 2013
-
Abstract
- PURPOSE: To determine whether the Xenopus laevis retina is capable of regenerating photoreceptor cells lost through apoptotic cell death in an inducible transgenic X. laevis model of retinitis pigmentosa (RP). METHODS: Acute rod photoreceptor apoptosis was induced in transgenic X. laevis expressing drug-inducible caspase 9. We subsequently monitored the ability of the retina to regenerate lost photoreceptors in the absence of drug, and in combination with physical injury or ectopic supplementation of basic fibroblast growth factor (FGF2). RESULTS: Direct activation of caspase 9 in rod photoreceptors resulted in the initiation of apoptosis and complete removal of rod photoreceptors within 4 days. Photoreceptors lost by apoptosis were not replaced over a 4-week recovery time frame. In contrast, physical disruption of rod-ablated retina was repaired by the end of a 3-week time frame, but did not result in rod photoreceptor regeneration other than at the site of injury. Furthermore, ectopic supplementation of FGF2 did not stimulate regeneration of photoreceptors lost by apoptosis. However, FGF2 supplementation increased the rate of regeneration of retina (including rod photoreceptors) in eyes from which retinal tissue was surgically removed. CONCLUSIONS: In the X. laevis retina, rod photoreceptors that undergo drug-induced caspase-9-mediated apoptosis are permanently lost and do not regenerate. In contrast, the neural retina (including rod photoreceptors) can regenerate in injured or retinectomized eyes, and this regeneration is promoted by supplementation with FGF2. However, FGF2 does not promote regeneration of rod photoreceptors that are selectively lost by apoptosis.
- Subjects :
- Microsurgery
genetic structures
Basic fibroblast growth factor
Blotting, Western
Xenopus
Apoptosis
Biology
Retinal Cone Photoreceptor Cells
Retina
Animals, Genetically Modified
chemistry.chemical_compound
Xenopus laevis
Retinal Rod Photoreceptor Cells
Retinitis pigmentosa
medicine
Animals
Regeneration
Caspase-9
Microscopy, Confocal
Regeneration (biology)
Anatomy
medicine.disease
biology.organism_classification
Immunohistochemistry
eye diseases
Cell biology
Disease Models, Animal
medicine.anatomical_structure
chemistry
Larva
biology.protein
sense organs
Retinitis Pigmentosa
Subjects
Details
- ISSN :
- 15525783
- Volume :
- 54
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- Investigative ophthalmologyvisual science
- Accession number :
- edsair.doi.dedup.....6b7b5a397f9a32033c2b82f7e4588378