Back to Search Start Over

Existence of contacts for the motion of a rigid body into a viscous incompressible fluid with the Tresca boundary conditions

Authors :
Matthieu Hillairet
Takéo Takahashi
Institut Montpelliérain Alexander Grothendieck (IMAG)
Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Source :
Tunisian Journal of Mathematics, Tunisian Journal of Mathematics, 2021, 3 (3), pp.447-468. ⟨10.48550/arXiv.1912.01882⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; We consider a fluid-structure interaction system composed by a rigid ball immersed into a viscous in-compressible fluid. The motion of the structure satisfies the Newton laws and the fluid equations are the standard Navier-Stokes system. At the boundary of the fluid domain, we use the Tresca boundary conditions, that permit the fluid to slip tangentially on the boundary under some conditions on the stress tensor. More precisely, there is a threshold determining if the fluid can slip or not and there is a friction force acting on the part where the fluid can slip. Our main result is the existence of contact in finite time between the ball and the exterior boundary of the fluid for this system in the bidimensional case and in presence of gravity.

Details

Language :
English
ISSN :
25767658
Database :
OpenAIRE
Journal :
Tunisian Journal of Mathematics, Tunisian Journal of Mathematics, 2021, 3 (3), pp.447-468. ⟨10.48550/arXiv.1912.01882⟩
Accession number :
edsair.doi.dedup.....6b8733bb50415d60b2487c24a4320025
Full Text :
https://doi.org/10.48550/arXiv.1912.01882⟩