Back to Search
Start Over
Selective modulation of nuclear factor of activated T-cell function in restenosis by a potent bipartite peptide inhibitor
- Source :
- Circulation Research, 110(2), 200-+. LIPPINCOTT WILLIAMS & WILKINS
- Publication Year :
- 2011
-
Abstract
- Rationale: Nuclear factor of activated T-cells (NFAT) is importantly implicated in pathological cardiac remodeling and vascular lesion formation. NFAT functionality is mainly regulated by calcineurin, a Ca 2+ -dependent multi-effector phosphatase. Calcineurin inhibitors such as cyclosporine A (CsA) were shown to be effective in the treatment of restenosis and vascular inflammation but with adverse side effects. Objective: This prompted the design of more selective inhibitors such as VIVIT and inhibitors of NFAT-calcineurin association, which unfortunately have a poor potency precluding clinical use. Methods and Results: Here, we describe the rational design of a potent bipartite inhibitor of NFAT–calcineurin interaction, MCV1, which targets two separate calcineurin docking motifs. Modeling, site-directed mutagenesis, and functional studies demonstrated that MCV1 acts by allosteric modulation of calcineurin. Comparable to CsA, MCV1 prevents NFAT activation at nanomolar potency without impairing calcineurin phosphatase activity, nuclear factor-κB nuclear import, and general cell signaling. In contrast, CsA but not MCV1-activated basal level extracellular signal-regulated kinases activity and prevented nuclear import of calcineurin, independent of NFAT activation. In vivo MCV1 abrogated NFAT-mediated T-cell activation in a model of PMA-elicited peritonitis, whereas topical application of MCV1 markedly reduced neointima formation in a mouse model of restenosis. Conclusions: We designed a bipartite NFAT inhibitor that is more potent than VIVIT and more selective than CsA. MCV1 constitutes not only a powerful tool to unravel NFAT function but also a potential drug candidate for the treatment of diseases implicating NFAT activation.
- Subjects :
- Male
Models, Molecular
Physiology
T-Lymphocytes
Amino Acid Motifs
Pharmacology
Lymphocyte Activation
Jurkat cells
Jurkat Cells
Mice
cardiovascular disease
Recurrence
Chlorocebus aethiops
Carotid Stenosis
Mice, Knockout
peptide inhibitor
Molecular Structure
Kinase
Calcineurin
NFAT
medicine.anatomical_structure
COS Cells
Cyclosporine
Cardiology and Cardiovascular Medicine
Immunosuppressive Agents
Signal Transduction
Cell signaling
Carotid Artery, Common
T cell
Phosphatase
Allosteric regulation
Biology
Peritonitis
Transfection
restenosis
Structure-Activity Relationship
Apolipoproteins E
medicine
Animals
Humans
Cell Proliferation
Hyperplasia
Dose-Response Relationship, Drug
NFATC Transcription Factors
Mice, Inbred C57BL
Disease Models, Animal
HEK293 Cells
Drug Design
Mutagenesis, Site-Directed
Carotid Artery Injuries
Peptides
Subjects
Details
- ISSN :
- 15244571 and 00097330
- Volume :
- 110
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Circulation research
- Accession number :
- edsair.doi.dedup.....6b8b6191ea469adcda52ec2fdb4d82f8