Back to Search Start Over

The Bub2-dependent mitotic pathway in yeast acts every cell cycle and regulates cytokinesis

Authors :
Leland H. Johnston
Lisa M. Frenz
Sarah E. Lee
Anthony L. Johnson
Didier Fesquet
Sanne Jensen
Source :
Journal of cell science. 114(Pt 12)
Publication Year :
2001

Abstract

In eukaryotes an abnormal spindle activates a conserved checkpoint consisting of the MAD and BUB genes that results in mitotic arrest at metaphase. Recently, we and others identified a novel Bub2-dependent branch to this checkpoint that blocks mitotic exit. This cell-cycle arrest depends upon inhibition of the G-protein Tem1 that appears to be regulated by Bfa1/Bub2, a two-component GTPase-activating protein, and the exchange factor Lte1. Here, we find that Bub2 and Bfa1 physically associate across the entire cell cycle and bind to Tem1 during mitosis and early G1. Bfa1 is multiply phosphorylated in a cell-cycle-dependent manner with the major phosphorylation occurring in mitosis. This Bfa1 phosphorylation is Bub2-dependent. Cdc5, but not Cdc15 or Dbf2, partly controls the phosphorylation of Bfa1 and also Lte1. Following spindle checkpoint activation, the cell cycle phosphorylation of Bfa1 and Lte1 is protracted and some species are accentuated. Thus, the Bub2-dependent pathway is active every cell cycle and the effect of spindle damage is simply to protract its normal function. Indeed, function of the Bub2 pathway is also prolonged during metaphase arrests imposed by means other than checkpoint activation. In metaphase cells Bub2 is crucial to restrain downstream events such as actin ring formation, emphasising the importance of the Bub2 pathway in the regulation of cytokinesis. Our data is consistent with Bub2/Bfa1 being a rate-limiting negative regulator of downstream events during metaphase.

Details

ISSN :
00219533
Volume :
114
Issue :
Pt 12
Database :
OpenAIRE
Journal :
Journal of cell science
Accession number :
edsair.doi.dedup.....6c0877623e4f8c730e1ca890a95620ca