Back to Search
Start Over
Tomographic weak-lensing shear spectra from large N-body and hydrodynamical simulations
- Publication Year :
- 2012
- Publisher :
- EDP Sciences, 2012.
-
Abstract
- Forthcoming experiments will enable us to determine tomographic shear spectra at a high precision level. Most predictions about them have until now been biased on algorithms yielding the expected linear and non-linear spectrum of density fluctuations. Even when simulations have been used, so-called Halofit (Smith et al 2003) predictions on fairly large scales have been needed. We wish to go beyond this limitation. We perform N-body and hydrodynamical simulations within a sufficiently large cosmological volume to allow a direct connection between simulations and linear spectra. While covering large length-scales, the simulation resolution is good enough to allow us to explore the high-l harmonics of the cosmic shear (up to l ~ 50000), well into the domain where baryon physics becomes important. We then compare shear spectra in the absence and in presence of various kinds of baryon physics, such as radiative cooling, star formation, and supernova feedback in the form of galactic winds. We distinguish several typical properties of matter fluctuation spectra in the different simulations and test their impact on shear spectra. We compare our outputs with those obtainable using approximate expressions for non--linear spectra, and identify substantial discrepancies even between our results and those of purely N-body results. Our simulations and the treatment of their outputs however enable us, for the first time, to obtain shear results taht are fully independent of any approximate expression, also in the high-l range, where we need to incorporate a non-linear power spectrum of density perturbations, and the effects of baryon physics. This will allow us to fully exploit the cosmological information contained in future high--sensitivity cosmic shear surveys, exploring the physics of cosmic shears via weak lensing measurements.<br />13 pages, 19 figures, A&A in press
- Subjects :
- Cosmology and Nongalactic Astrophysics (astro-ph.CO)
Radiative cooling
FOS: Physical sciences
Astrophysics
01 natural sciences
dark matter
weak [gravitational lensing]
Gravitational lensing: weak
0103 physical sciences
Dark energy
Dark matter
dark energy
010303 astronomy & astrophysics
Weak gravitational lensing
Physics
COSMIC cancer database
theory [cosmology]
010308 nuclear & particles physics
Spectral density
Astronomy and Astrophysics
Astronomy and Astrophysic
Computational physics
cosmology: theory
gravitational lensing: weak
Baryon
Shear (sheet metal)
Supernova
13. Climate action
Space and Planetary Science
Harmonics
Cosmology: theory
Astrophysics - Cosmology and Nongalactic Astrophysics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....6c43b3d86f7cb741f5c7cbde8ac6dbdd