Back to Search
Start Over
Almost global asymptotic stability of a grid-connected synchronous generator
- Source :
- IndraStra Global.
- Publication Year :
- 2018
- Publisher :
- SPRINGER LONDON LTD, 2018.
-
Abstract
- We study the global asymptotic behavior of a grid-connected constant field current synchronous generator (SG). The grid is regarded as an "infinite bus", i.e. a three-phase AC voltage source. The generator does not include any controller other than the frequency droop loop. This means that the mechanical torque applied to this generator is an affine function of its angular velocity. The negative slope of this function is the frequency droop constant. We derive sufficient conditions on the SG parameters under which there exist exactly two periodic state trajectories for the SG, one stable and another unstable, and for almost all initial states, the state trajectory of the SG converges to the stable periodic trajectory (all the angles are measured modulo $2\pi$). Along both periodic state trajectories, the angular velocity of the SG is equal to the grid frequency. Our sufficient conditions are easy to check computationally. An important tool in our analysis is an integro-differential equation called the {\em exact swing equation}, which resembles a forced pendulum equation and is equivalent to our fourth order model of the grid-connected SG. Apart from our objective of providing an analytical proof for a global asymptotic behavior observed in a classical dynamical system, a key motivation for this work is the development of synchronverters which are inverters that mimic the behavior of SGs. Understanding the global dynamics of SGs can guide the choice of synchronverter parameters and operation. As an application we find a set of stable nominal parameters for a 500 kW synchronverter.<br />Comment: submitted in October 2015, waiting for reviews, 37 pages
- Subjects :
- 0209 industrial biotechnology
Control and Optimization
Infinite bus
SYNCHRONVERTERS INVERTERS
Angular velocity
02 engineering and technology
Permanent magnet synchronous generator
Dynamical system
Generator (circuit theory)
020901 industrial engineering & automation
Exponential stability
SYSTEMS
Frequency grid
FOS: Mathematics
0202 electrical engineering, electronic engineering, information engineering
Torque
Voltage droop
TRANSIENT STABILITY
Mathematics - Optimization and Control
Forced pendulum equation
Mathematics
Applied Mathematics
Synchronverter
020208 electrical & electronic engineering
Mathematical analysis
EXCITATION CONTROL
Optimization and Control (math.OC)
Control and Systems Engineering
Synchronous machine
Signal Processing
SYNCHRONIZATION
Almost global asymptotic stability
OSCILLATORS
34D23, 93D20, 94C99
POWER NETWORKS
Subjects
Details
- Language :
- English
- ISSN :
- 23813652
- Database :
- OpenAIRE
- Journal :
- IndraStra Global
- Accession number :
- edsair.doi.dedup.....6c4ebd3e80de7cb9820857adbc1e23e5