Back to Search
Start Over
Optical reflectivity of a disordered monolayer of highly scattering particles: coherent scattering model versus experiment
- Source :
- Journal of the Optical Society of America. A, Optics, image science, and vision. 31(4)
- Publication Year :
- 2014
-
Abstract
- Recently a multiple-scattering model for the reflectivity of a disordered monolayer of scattering particles on a flat surface was put forth [J. Opt. Soc. Am.29, 1161 (2012)]. The approximate theoretical model provides relatively simple formulas for the reflectivity, but it was developed for a monodisperse monolayer. Here we extend the model to the case of a polydisperse monolayer and derive the appropriate formulas to calculate the optical transmissivity of the monolayer supported by a flat interface. A second objective of this paper is to test the approximate theoretical model against experimental data with highly scattering particles. We prepared monolayers of three different surface coverage fractions of polydisperse alumina and titanium dioxide particles deposited randomly on a glass slide. We measured their optical reflectivity and transmissivity versus the angle of incidence using a laser with a wavelength of 670 nm. Using the nominal values for the particles' most probable radius and refractive index, we fitted the theoretical model to the experimental curves and found that it reproduces very well the experimental curves. Interestingly, a dip in the reflectivity curves at large angles of incidence is present for the alumina monolayers but not in the titanium dioxide monolayers. The dip corresponds to a maximum in the scattering efficiency by the alumina monolayers. The theoretical model reproduces very well this behavior.
- Subjects :
- Materials science
business.industry
Scattering
Physics::Optics
Fresnel equations
Atomic and Molecular Physics, and Optics
Light scattering
Electronic, Optical and Magnetic Materials
Condensed Matter::Soft Condensed Matter
Wavelength
Optics
Angle of incidence (optics)
Monolayer
Computer Vision and Pattern Recognition
Scattering theory
business
Refractive index
Subjects
Details
- ISSN :
- 15208532
- Volume :
- 31
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- Journal of the Optical Society of America. A, Optics, image science, and vision
- Accession number :
- edsair.doi.dedup.....6d7ce7c56c7cc6d69b09e055d7cec154