Back to Search
Start Over
Hochschild and cyclic homology of the quantum multiparametric torus
- Source :
- Journal of Pure and Applied Algebra. 114(3):321-329
- Publication Year :
- 1997
- Publisher :
- Elsevier BV, 1997.
-
Abstract
- The quantum multiparametric torus is the algebra generated over a field $k$ by the $2N$ variables $x_1,\ldots,x_N$ and $x_1^{-1},\ldots,x_N^{-1}$ and the relations $ x_ix_i^{-1}=1=x_i^{-1} x_i$ and $x_ix_j=q_{ij}x_jx_i$ for every $1\le i,j\le N$ and where $\{q_{ij}\}_{1\le i,j\le N}$ is a family of non-zero scalars of $k$ satisfying the relations $q_{ii}=1$ and $q_{ij}q_{ji}=1$ for every $1\le i,j,\le N$. We explicitly compute its Hochschild homology groups, using previously constructed ``quantum Koszul complexes''. We deduce the corresponding cyclic homology groups.
- Subjects :
- Pure mathematics
17B37, 18G50, 18G60
Cellular homology
Cyclic homology
"Quantum algebras
Koszul complexes
Mathematics::Algebraic Topology
Morse homology
Mathematics::K-Theory and Homology
Mathematics::Quantum Algebra
[MATH.MATH-RA] Mathematics [math]/Rings and Algebras [math.RA]
Mathematics::Symplectic Geometry
Quantum
Mathematics
Discrete mathematics
Algebra and Number Theory
Mathematics::Commutative Algebra
Hochschild homology
[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA]
cyclic homology
Koszul complexes"
quantum torus
Torus
Mathematics::Geometric Topology
Mayer–Vietoris sequence
Singular homology
Relative homology
Quantum algebras
Subjects
Details
- ISSN :
- 00224049
- Volume :
- 114
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- Journal of Pure and Applied Algebra
- Accession number :
- edsair.doi.dedup.....6d8363f47c284d3292df1c45c230fac6
- Full Text :
- https://doi.org/10.1016/s0022-4049(95)00169-7