Back to Search Start Over

Hochschild and cyclic homology of the quantum multiparametric torus

Authors :
Marc Wambst
Thureau, Grégory
Institut de Recherche Mathématique Avancée (IRMA)
Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Pure and Applied Algebra. 114(3):321-329
Publication Year :
1997
Publisher :
Elsevier BV, 1997.

Abstract

The quantum multiparametric torus is the algebra generated over a field $k$ by the $2N$ variables $x_1,\ldots,x_N$ and $x_1^{-1},\ldots,x_N^{-1}$ and the relations $ x_ix_i^{-1}=1=x_i^{-1} x_i$ and $x_ix_j=q_{ij}x_jx_i$ for every $1\le i,j\le N$ and where $\{q_{ij}\}_{1\le i,j\le N}$ is a family of non-zero scalars of $k$ satisfying the relations $q_{ii}=1$ and $q_{ij}q_{ji}=1$ for every $1\le i,j,\le N$. We explicitly compute its Hochschild homology groups, using previously constructed ``quantum Koszul complexes''. We deduce the corresponding cyclic homology groups.

Details

ISSN :
00224049
Volume :
114
Issue :
3
Database :
OpenAIRE
Journal :
Journal of Pure and Applied Algebra
Accession number :
edsair.doi.dedup.....6d8363f47c284d3292df1c45c230fac6
Full Text :
https://doi.org/10.1016/s0022-4049(95)00169-7