Back to Search Start Over

Radio emission in a nearby ultracool dwarf binary: a multi-frequency study

Authors :
J. B. Climent
J. C. Guirado
M. R. Zapatero Osorio
O. V. Zakhozhay
M. Pérez-Torres
R. Azulay
B. Gauza
R. Rebolo
V. J. S. Béjar
J. Martín-Pintado
C. Lefèvre
Ministerio de Economía y Competitividad (España)
Generalitat Valenciana
European Commission
Source :
Digital.CSIC. Repositorio Institucional del CSIC, instname
Publication Year :
2022
Publisher :
arXiv, 2022.

Abstract

Context. The substellar triple system VHS J125601.92−125723.9 (hereafter VHS 1256−1257) is composed of an equal-mass M7.5 brown dwarf binary and an L7 low-mass substellar object. In Guirado et al. (2018, A&A, 610, A23) we published the detection of radio emission at 8.4 GHz coming from the central binary and making it an excellent target for further observations. Aims. We aim to identify the origin of the radio emission occurring in the central binary of VHS 1256−1257 while discussing the expected mechanisms involved in the radio emission of ultra-cool dwarfs. Methods. We observed this system with the Karl G. Jansky Very Large Array, the European very-long-baseline interferometry (VLBI) Network, the enhanced Multi-Element Remotely Linked Interferometer Network, the NOrthern Extended Millimeter Array, and the Atacama Large Millimetre Array at frequencies ranging from 5 GHz up to 345 GHz in several epochs during 2017, 2018, and 2019. Results. We found radio emission at 6 GHz and 33 GHz coincident with the expected position of the central binary of VHS 1256−1257. The Stokes I density fluxes detected were 73 ± 4 μJy and 83 ± 13 μJy, respectively, with no detectable circular polarisation or pulses. No emission is detected at higher frequencies (230 GHz and 345 GHz), nor at 5 GHz with VLBI arrays. The emission appears to be stable over almost three years at 6 GHz. To explain the constraints obtained both from the detections and non-detections, we considered multiple scenarios including thermal and nonthermal emission, and different contributions from each component of the binary. Conclusions. Our results can be well explained by nonthermal gyrosynchrotron emission originating at radiation belts with a low plasma density (ne = 300−700 cm−3), a moderate magnetic field strength (B ≈ 140 G), and an energy distribution of electrons following a power-law (dN/dE ∝ E−δ) with δ fixed at 1.36. These radiation belts would need to be present in both components and also be viewed equatorially. © ESO 2022.<br />We sincerely thank the anonymous referee for his/her very useful and constructive criticisms and suggestions. This paper is based on observations carried out with the IRAM NOEMA interferometer and the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). JBC and JCG were partially supported by the Spanish MINECO projects AYA2015-63939-C2-2-P, PGC2018-098915-B-C22 and by the Generalitat Valenciana project GVPROMETEO2020−080. MPT acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709) and through grants PGC2018-098915-B-C21 and PID2020-117404GB-C21 (MCI/AEI/FEDER, UE). RA was supported by the Generalitat Valenciana postdoctoral grant APOSTD/2018/177. BG acknowledges support from the UK Science and Technology Facilities Council (STFC) via the Consolidated Grant ST/R000905/1. MRZO and VJSB acknowledge the financial support from PID2019-109522GB-C51 and PID2019-109522GB-C53, respectively.

Details

Database :
OpenAIRE
Journal :
Digital.CSIC. Repositorio Institucional del CSIC, instname
Accession number :
edsair.doi.dedup.....6d9c6f2c228abada83c64316e157cc04
Full Text :
https://doi.org/10.48550/arxiv.2201.12606