Back to Search
Start Over
The syzygy theorem for Bézout rings
- Source :
- Mathematics of Computation, Mathematics of Computation, American Mathematical Society, 2020, 89, pp.941-964. ⟨10.1090/mcom/3466⟩
- Publication Year :
- 2019
- Publisher :
- American Mathematical Society (AMS), 2019.
-
Abstract
- International audience; We provide constructive versions of Hilbert's syzygy theorem for Z and Z/nZ following Schreyer's method. Moreover, we extend these results to arbitrary coherent strict Bézout rings with a divisibility test for the case of finitely generated modules whose module of leading terms is finitely generated.
- Subjects :
- Pure mathematics
[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]
Schreyer's syzygy algorithm
010103 numerical & computational mathematics
01 natural sciences
Constructive
Valuation ring
MSC 2010: 13D02, 13P10, 13C10, 13P20, 14Q20
Finitely-generated abelian group
0101 mathematics
Syzygy theorem
Gröbner ring
Monomial order
strict Bézout ring
Mathematics
Algebra and Number Theory
Hilbert's syzygy theorem
Mathematics::Commutative Algebra
monomial order
valuation ring
Applied Mathematics
010102 general mathematics
free resolution
Divisibility rule
Mathematics - Commutative Algebra
16. Peace & justice
dynamical Gröbner basis
13D02, 13P10, 13C10, 13P20, 14Q20
Schreyer's monomial order
Computational Mathematics
Subjects
Details
- ISSN :
- 10886842 and 00255718
- Volume :
- 89
- Database :
- OpenAIRE
- Journal :
- Mathematics of Computation
- Accession number :
- edsair.doi.dedup.....6e3ec5c545896b26904e112b3e75cacb
- Full Text :
- https://doi.org/10.1090/mcom/3466