Back to Search Start Over

Role of cross-linkers in yeast branched actin networks: Linking biochemistry and mechanics

Authors :
Julien Heuvingh
Olivia du Roure
Audrey Guillotin
Alphée Michelot
Jessica Planade
Physique et mécanique des milieux hétérogenes (PMMH (UMR_7636))
Université Paris Diderot - Paris 7 (UPD7)-ESPCI ParisTech-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI ParisTech)
Sorbonne Universités
Université Pierre et Marie Curie (Paris 6)
Université Sorbonne Paris Cité (USPC)
UMR 5168/ UMR 1417 Laboratoire Physiologie Cellulaire & Végétale
Institut National de la Recherche Agronomique (INRA)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Centre National de la Recherche Scientifique (CNRS)
Université Grenoble Alpes (UGA)
Physiologie cellulaire et végétale (LPCV)
Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
UMR 5168 Laboratoire de Physiologie Cellulaire Végétale
Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH)
Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Université de Paris (UP)
Université Paris sciences et lettres (PSL)
Sorbonne Université (SU)
Université Pierre et Marie Curie - Paris 6 (UPMC)
Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
UMR 7636 Physique et Mécanique des Milieux Hétérogènes
Centre National de la Recherche Scientifique ( CNRS )
Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris ( ESPCI ParisTech )
Université Sorbonne Paris Cité ( USPC )
Institut National de la Recherche Agronomique ( INRA )
Commissariat à l'Energie Atomique et aux Energies Alternatives
Université Grenoble Alpes ( UGA )
Laboratoire de physiologie cellulaire végétale ( LPCV )
Institut National de la Recherche Agronomique ( INRA ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA )
Source :
60th Annual Meeting of the Biophysical-Society, 60. Annual Meeting of the Biophysical-Society, 60. Annual Meeting of the Biophysical-Society, Feb 2016, Los Angeles, CA, United States. pp.1, 60. Annual Meeting of the Biophysical-Society, Feb 2016, Los Angeles, CA, United States. Cell Press, 60th Annual Meeting of the Biophysical-Society, 110 (3), pp.1, 2016, Biophysical Journal
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

The actin cytoskeleton is an assembly of organized polymer structures. In cells, actin contributes to their internal organization, their rigidity, and their ability to exert forces. The properties of the actin networks are regulated by multiple families of actin binding proteins (ABPs). In this work, we focus on Arp2/3-branched networks, which are implicated in a variety of cellular functions such as motility or endocytosis. We propose to examine the relationship between the mechanical properties of actin networks and the biochemical composition of these gels.While atomic force microscopy and micropipette techniques have been successfully used to probe the mechanics of actin gels in vitro, their main drawback for our purpose is the limited amount of measurements per experiment. To overcome this limitation, we use instead a quantitative high-throughput system of magnetic colloids (Pujol et al., 2012). Actin networks are assembled around the colloidal particles from sets of purified proteins (bottom-up approach) or from yeast protein extracts. The advantage of these extracts is that proteins can be genetically removed one-by-one, in order to test for their functions in a near-physiological environment (top-down approach) (Michelot and Drubin, 2014).In this first study, we focus on the impact of crosslinkers, which create attachment points between neighboring filaments. The absence of two crosslinkers Sac6 (fimbrin) and Scp1 (calponin) softens and modifies the long-term evolution of actin gels assembled from extracts. Indeed, networks’ structural integrity is not recovered after load. In agreement with previous data, the addition of purified fimbrin in the bottom-up approach increases the elastic modulus of actin gels in a sigmoidal dose-dependent manner. Moreover, the system seems to evolve from little plasticity and non-linear behavior under load to a more plastic and less non-linear response.

Details

Language :
English
Database :
OpenAIRE
Journal :
60th Annual Meeting of the Biophysical-Society, 60. Annual Meeting of the Biophysical-Society, 60. Annual Meeting of the Biophysical-Society, Feb 2016, Los Angeles, CA, United States. pp.1, 60. Annual Meeting of the Biophysical-Society, Feb 2016, Los Angeles, CA, United States. Cell Press, 60th Annual Meeting of the Biophysical-Society, 110 (3), pp.1, 2016, Biophysical Journal
Accession number :
edsair.doi.dedup.....6e81ef4b92d46eeaa691fe23bda10d51