Back to Search Start Over

Using the Gini coefficient to characterize the shape of computational chemistry error distributions

Authors :
Pascal Pernot
Andreas Savin
Institut de Chimie Physique (ICP)
Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de chimie théorique (LCT)
Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Source :
Theoretical Chemistry Accounts: Theory, Computation, and Modeling, Theoretical Chemistry Accounts: Theory, Computation, and Modeling, Springer Verlag, 2021, 140 (3), pp.24. ⟨10.1007/s00214-021-02725-0⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; The distribution of errors is a central object in the assesment and benchmarking of computational chemistry methods. The popular and often blind use of the mean unsigned error as a benchmarking statistic leads to ignore distributions features that impact the reliability of the tested methods. We explore how the Gini coefficient offers a global representation of the errors distribution, but, except for extreme values, does not enable an unambiguous diagnostic. We propose to relieve the ambiguity by applying the Gini coefficient to mode-centered error distributions. This version can usefully complement benchmarking statistics and alert on error sets with potentially problematic shapes.

Details

Language :
English
ISSN :
1432881X and 14322234
Database :
OpenAIRE
Journal :
Theoretical Chemistry Accounts: Theory, Computation, and Modeling, Theoretical Chemistry Accounts: Theory, Computation, and Modeling, Springer Verlag, 2021, 140 (3), pp.24. ⟨10.1007/s00214-021-02725-0⟩
Accession number :
edsair.doi.dedup.....6e9eb8da2c1104b0c0388ef02762e8d5
Full Text :
https://doi.org/10.1007/s00214-021-02725-0⟩