Back to Search Start Over

α-Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based Design, Synthesis, and Activity Assessment

Authors :
Pieter Leyssen
Adriaan H. de Wilde
Jiang Wang
Albrecht von Brunn
Eric J. Snijder
Daizong Lin
Hong Liu
Johan Neyts
Linlin Zhang
Yuri Kusov
Qingjun Ma
Kristina Lanko
Yong Nian
Rolf Hilgenfeld
Source :
Journal of Medicinal Chemistry, Journal of Medicinal Chemistry, 63(9), 4562-4578. AMER CHEMICAL SOC
Publication Year :
2020
Publisher :
American Chemical Society (ACS), 2020.

Abstract

The main protease of coronaviruses and the 3C protease of enteroviruses share a similar active-site architecture and a unique requirement for glutamine in the P1 position of the substrate. Because of their unique specificity and essential role in viral polyprotein processing, these proteases are suitable targets for the development of antiviral drugs. In order to obtain near-equipotent, broad-spectrum antivirals against alphacoronaviruses, betacoronaviruses, and enteroviruses, we pursued a structure-based design of peptidomimetic α-ketoamides as inhibitors of main and 3C proteases. Six crystal structures of protease-inhibitor complexes were determined as part of this study. Compounds synthesized were tested against the recombinant proteases as well as in viral replicons and virus-infected cell cultures; most of them were not cell-toxic. Optimization of the P2 substituent of the α-ketoamides proved crucial for achieving near-equipotency against the three virus genera. The best near-equipotent inhibitors, 11u (P2 = cyclopentylmethyl) and 11r (P2 = cyclohexylmethyl), display low-micromolar EC50 values against enteroviruses, alphacoronaviruses, and betacoronaviruses in cell cultures. In Huh7 cells, 11r exhibits three-digit picomolar activity against the Middle East Respiratory Syndrome coronavirus. ispartof: JOURNAL OF MEDICINAL CHEMISTRY vol:63 issue:9 pages:4562-4578 ispartof: location:United States status: published

Details

ISSN :
15204804 and 00222623
Database :
OpenAIRE
Journal :
Journal of Medicinal Chemistry
Accession number :
edsair.doi.dedup.....6ea147b4b1b4e2fea060e6f6a9ba64b1
Full Text :
https://doi.org/10.1021/acs.jmedchem.9b01828