Back to Search Start Over

Improving a leaves automatic recognition process using PCA

Authors :
Carlos M. Travieso
Miguel Ferrer
Jesús B. Alonso
Jordi Solé-Casals
Universitat de Vic. Escola Politècnica Superior
Universitat de Vic. Grup de Recerca en Tecnologies Digitals
International Workshop on Practical Applications of Computational Biology and Bioinformatics (Iwpacbb 2008)
Source :
Recercat. Dipósit de la Recerca de Catalunya, instname, RIUVic. Repositorio Institucional de la Universidad de Vic, Advances in Soft Computing ISBN: 9783540858607
Publisher :
Springer

Abstract

In this work we present a simulation of a recognition process with perimeter characterization of a simple plant leaves as a unique discriminating parameter. Data coding allowing for independence of leaves size and orientation may penalize performance recognition for some varieties. Border description sequences are then used, and Principal Component Analysis (PCA) is applied in order to study which is the best number of components for the classification task, implemented by means of a Support Vector Machine (SVM) System. Obtained results are satisfactory, and compared with [4] our system improves the recognition success, diminishing the variance at the same time.

Details

ISBN :
978-3-540-85860-7
ISBNs :
9783540858607
Database :
OpenAIRE
Journal :
Recercat. Dipósit de la Recerca de Catalunya, instname, RIUVic. Repositorio Institucional de la Universidad de Vic, Advances in Soft Computing ISBN: 9783540858607
Accession number :
edsair.doi.dedup.....6efa1afc52287e68e3ef3c0770fba236