Back to Search
Start Over
<scp>l</scp> -cysteine reversibly inhibits glucose-induced biphasic insulin secretion and ATP production by inactivating PKM2
- Source :
- Proceedings of the National Academy of Sciences. 112
- Publication Year :
- 2015
- Publisher :
- Proceedings of the National Academy of Sciences, 2015.
-
Abstract
- Increase in the concentration of plasma L-cysteine is closely associated with defective insulin secretion from pancreatic β-cells, which results in type 2 diabetes (T2D). In this study, we investigated the effects of prolonged L-cysteine treatment on glucose-stimulated insulin secretion (GSIS) from mouse insulinoma 6 (MIN6) cells and from mouse pancreatic islets, and found that the treatment reversibly inhibited glucose-induced ATP production and resulting GSIS without affecting proinsulin and insulin synthesis. Comprehensive metabolic analyses using capillary electrophoresis time-of-flight mass spectrometry showed that prolonged L-cysteine treatment decreased the levels of pyruvate and its downstream metabolites. In addition, methyl pyruvate, a membrane-permeable form of pyruvate, rescued L-cysteine-induced inhibition of GSIS. Based on these results, we found that both in vitro and in MIN6 cells, L-cysteine specifically inhibited the activity of pyruvate kinase muscle isoform 2 (PKM2), an isoform of pyruvate kinases that catalyze the conversion of phosphoenolpyruvate to pyruvate. L-cysteine also induced PKM2 subunit dissociation (tetramers to dimers/monomers) in cells, which resulted in impaired glucose-induced ATP production for GSIS. DASA-10 (NCGC00181061, a substituted N,N'-diarylsulfonamide), a specific activator for PKM2, restored the tetramer formation and the activity of PKM2, glucose-induced ATP production, and biphasic insulin secretion in L-cysteine-treated cells. Collectively, our results demonstrate that impaired insulin secretion due to exposure to L-cysteine resulted from its direct binding and inactivation of PKM2 and suggest that PKM2 is a potential therapeutic target for T2D.
- Subjects :
- Pyruvate decarboxylation
Thyroid Hormones
endocrine system
Pyruvate dehydrogenase kinase
medicine.medical_treatment
Pyruvate dehydrogenase phosphatase
PKM2
Biology
Cell Line
Mice
Adenosine Triphosphate
Insulin Secretion
medicine
Animals
Insulin
Cysteine
Proinsulin
Multidisciplinary
Membrane Proteins
Pyruvate carboxylase
Glucose
PNAS Plus
Biochemistry
Carrier Proteins
Pyruvate kinase
Subjects
Details
- ISSN :
- 10916490 and 00278424
- Volume :
- 112
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences
- Accession number :
- edsair.doi.dedup.....6f1784764b444b6e158f9bff4d641a38
- Full Text :
- https://doi.org/10.1073/pnas.1417197112