Back to Search Start Over

iLoF: An intelligent Lab on Fiber Approach for Human Cancer Single-Cell Type Identification

Authors :
Pedro A. S. Jorge
Chunsheng Jin
Diana Campos
Meritxell Balmaña
Niclas G. Karlsson
João Paulo Cunha
R. S. Rodrigues Ribeiro
Celso A. Reis
Stefan Mereiter
Joana S. Paiva
Paula Sampaio
Instituto de Investigação e Inovação em Saúde
Source :
Scientific Reports, Vol 10, Iss 1, Pp 1-16 (2020), Scientific Reports
Publication Year :
2020
Publisher :
Nature Publishing Group, 2020.

Abstract

With the advent of personalized medicine, there is a movement to develop “smaller” and “smarter” microdevices that are able to distinguish similar cancer subtypes. Tumor cells display major differences when compared to their natural counterparts, due to alterations in fundamental cellular processes such as glycosylation. Glycans are involved in tumor cell biology and they have been considered to be suitable cancer biomarkers. Thus, more selective cancer screening assays can be developed through the detection of specific altered glycans on the surface of circulating cancer cells. Currently, this is only possible through time-consuming assays. In this work, we propose the “intelligent” Lab on Fiber (iLoF) device, that has a high-resolution, and which is a fast and portable method for tumor single-cell type identification and isolation. We apply an Artificial Intelligence approach to the back-scattered signal arising from a trapped cell by a micro-lensed optical fiber. As a proof of concept, we show that iLoF is able to discriminate two human cancer cell models sharing the same genetic background but displaying a different surface glycosylation profile with an accuracy above 90% and a speed rate of 2.3 seconds. We envision the incorporation of the iLoF in an easy-to-operate microchip for cancer identification, which would allow further biological characterization of the captured circulating live cells. This work was partially funded by the projects NanoSTIMA and NORTE-01-0145-FEDER-000029, both supported by the North Portugal Regional Operational Program (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF); and by the Portuguese Foundation for Science and Technology, within the scope of the PhD grant PD/BD/135023/2017 and the projects: PTDC/BBB-EBI/0567/2014 (to CAR) and UID/BIM/04293/2013. It was also funded by FEDER funds through the Operational Programme for Competitiveness Factors-COMPETE (POCI-01-0145-FEDER-016585; POCI-01-0145-FEDER-007274; PPBI-POCI-01-0145-FEDER-022122). MB acknowledges the Marie Sklodowska-Curie grant agreement No. 748880.

Details

Language :
English
ISSN :
20452322
Volume :
10
Issue :
1
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....6f3e49d058dbff39b04cdfc48888a836
Full Text :
https://doi.org/10.1038/s41598-020-59661-5