Back to Search Start Over

Enhancement and modeling of enzymatic hydrolysis on cellulose from agave bagasse hydrothermally pretreated in a horizontal bioreactor

Authors :
Marcela Sofía Pino
Michele Michelin
Rosa M. Rodríguez-Jasso
Héctor A. Ruiz
Universidade do Minho
Source :
Repositório Científico de Acesso Aberto de Portugal, Repositório Científico de Acesso Aberto de Portugal (RCAAP), instacron:RCAAP
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

One of the major challenges in biofuels production from lignocellulosic biomass is the generation of high glucose titers from cellulose in the enzymatic hydrolysis stage of pretreated biomass to guarantee a cost-effective process. Therefore, the enzymatic saccharification on cellulose at high solid loading is an alternative. In this work, the agave bagasse was hydrothermally pretreated and optimized at 194°C/30min, obtaining a pretreated solid rich in cellulose content (>46.46%), and subjected to enzymatic hydrolysis at high solid levels. A horizontal bioreactor was designed for enzyme saccharification at high solid loadings [25% (w/v)]. The bioreactor improved mixing efficiency, with cellulose conversions up to 98% (195.6g/L at 72h). Moreover, mathematical modeling of cellulase deactivation demonstrated that cellulases lose most of their initial activity in the first hours of the reaction. Also, cellulose was characterized by X-ray diffraction, and the pretreated solids were visualized using scanning electron microscopy.<br />This project was funded by the Secretary of Public Education of Mexico - Mexican Science and Technology Council (SEP-CONACYT) with the Basic Science Project-2015-01 (Ref. 254808). Marcela Sofía Pino also thanks the National Council for Science and Technology (CONACYT, Mexico) for her Master Fellowship support (grant number: 611312/452636), and Dr. Michele Michelin thanks the Portuguese Foundation for Science and Technology (FCT) for her postdoctoral fellowship (SFRH/BPD/100786/2014).<br />info:eu-repo/semantics/publishedVersion

Details

ISSN :
01448617
Volume :
211
Database :
OpenAIRE
Journal :
Carbohydrate Polymers
Accession number :
edsair.doi.dedup.....6f4f6fc63c72b9e64df6e0394a9e6b80