Back to Search Start Over

Stochastic approximation of quasi-stationary distributions on compact spaces and applications

Authors :
Bertrand Cloez
Michel Benaïm
Fabien Panloup
Institut de Mathématiques (UNINE)
Université de Neuchâtel (UNINE)
Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA)
Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)
Laboratoire Angevin de Recherche en Mathématiques (LAREMA)
Université d'Angers (UA)-Centre National de la Recherche Scientifique (CNRS)
Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
PANORisk
Institut de Mathematiques
SNF : 200020/149871, 200021/175728
Source :
Annals of Applied Probability, Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2018, 28 (4), pp.2370-2416, Ann. Appl. Probab. 28, no. 4 (2018), 2370-2416, Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2018, 28 (4), pp.2370-2416. ⟨10.1214/17-AAP1360⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; In the continuity of a recent paper ([6]), dealing with finite Markov chains, this paper proposes and analyzes a recursive algorithm for the approximation of the quasi-stationary distribution of a general Markov chain living on a compact metric space killed in finite time. The idea is to run the process until extinction and then to bring it back to life at a position randomly chosen according to the (possibly weighted) empirical occupation measure of its past positions. General conditions are given ensuring the convergence of this measure to the quasi-stationary distribution of the chain. We then apply this method to the numerical approximation of the quasi-stationary distribution of a diffusion process killed on the boundary of a compact set and to the estimation of the spectral gap of irreducible Markov processes. Finally, the sharpness of the assumptions is illustrated through the study of the algorithm in a non-irreducible setting.

Details

Language :
English
ISSN :
10505164 and 21688737
Database :
OpenAIRE
Journal :
Annals of Applied Probability, Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2018, 28 (4), pp.2370-2416, Ann. Appl. Probab. 28, no. 4 (2018), 2370-2416, Annals of Applied Probability, Institute of Mathematical Statistics (IMS), 2018, 28 (4), pp.2370-2416. ⟨10.1214/17-AAP1360⟩
Accession number :
edsair.doi.dedup.....6f786138ff6564eabab110ed42e845e0
Full Text :
https://doi.org/10.1214/17-AAP1360⟩