Back to Search Start Over

Bench-Top Method for Fabricating Glass-Sealed Nanodisk Electrodes, Glass Nanopore Electrodes, and Glass Nanopore Membranes of Controlled Size

Authors :
Adam Johan Bergren
Peter G. Shiozawa
Ronald M. Jones
Gangli Wang
Chris C. Cauley
Henry S. White
Eric N. Ervin
Bo Zhang
Ryan J. White
Jeremy Galusha
Source :
Analytical Chemistry. 79:4778-4787
Publication Year :
2007
Publisher :
American Chemical Society (ACS), 2007.

Abstract

A simple benchtop method of fabricating glass-sealed nanometer-sized Au and Pt disk electrodes, glass nanopore electrodes, and glass nanopore membranes is reported. The synthesis of all three structures is initiated by sealing the tips of electrochemically sharpened Au and Pt microwires into glass membranes at the end of a soda lime or lead glass capillary. Pt and Au nanodisk electrodes are obtained by hand polishing using a high-input impedance metal oxide semiconductor field effect transistor (MOSFET)-based circuit to monitor the radius of the metal disk. Proper biasing of the MOSFET circuit, based on a numerical analysis of the polishing circuit impedance, allows for the reproducible fabrication of Pt disk electrodes of radii as small as 10 nm. Significantly smaller background currents in voltammetric measurements are obtained using lead glass capillaries, a consequence of the lower mobility of Pb(2+) (relative to Na(+)) in the glass matrix. Glass nanopore electrodes and glass nanopore membranes are fabricated, respectively, by removal of part or all of the metal sealed in the glass membranes. The nanostructures are characterized by atomic force microscopy, steady-state voltammetry, and ion conductivity measurements.

Details

ISSN :
15206882 and 00032700
Volume :
79
Database :
OpenAIRE
Journal :
Analytical Chemistry
Accession number :
edsair.doi.dedup.....6f8e204f078ddb7e24f83ffc2c814d11