Back to Search Start Over

Learning mixtures of permutations: Groups of pairwise comparisons and combinatorial method of moments

Authors :
Mao, Cheng
Wu, Yihong
Source :
The Annals of Statistics. 50
Publication Year :
2022
Publisher :
Institute of Mathematical Statistics, 2022.

Abstract

In applications such as rank aggregation, mixture models for permutations are frequently used when the population exhibits heterogeneity. In this work, we study the widely used Mallows mixture model. In the high-dimensional setting, we propose a polynomial-time algorithm that learns a Mallows mixture of permutations on $n$ elements with the optimal sample complexity that is proportional to $\log n$, improving upon previous results that scale polynomially with $n$. In the high-noise regime, we characterize the optimal dependency of the sample complexity on the noise parameter. Both objectives are accomplished by first studying demixing permutations under a noiseless query model using groups of pairwise comparisons, which can be viewed as moments of the mixing distribution, and then extending these results to the noisy Mallows model by simulating the noiseless oracle.<br />55 pages, 1 figure

Details

ISSN :
00905364
Volume :
50
Database :
OpenAIRE
Journal :
The Annals of Statistics
Accession number :
edsair.doi.dedup.....6fc4b49a28becc684eaeeb628a537aa5
Full Text :
https://doi.org/10.1214/22-aos2185