Back to Search
Start Over
Regularity of solutions to the fractional Cheeger-Laplacian on domains in metric spaces of bounded geometry
- Source :
- Journal of Differential Equations. 306:590-632
- Publication Year :
- 2022
- Publisher :
- Elsevier BV, 2022.
-
Abstract
- We study existence, uniqueness, and regularity properties of the Dirichlet problem related to fractional Dirichlet energy minimizers in a complete doubling metric measure space $(X,d_X,\mu_X)$ satisfying a $2$-Poincar\'e inequality. Given a bounded domain $\Omega\subset X$ with $\mu_X(X\setminus\Omega)>0$, and a function $f$ in the Besov class $B^\theta_{2,2}(X)\cap L^2(X)$, we study the problem of finding a function $u\in B^\theta_{2,2}(X)$ such that $u=f$ in $X\setminus\Omega$ and $\mathcal{E}_\theta(u,u)\le \mathcal{E}_\theta(h,h)$ whenever $h\in B^\theta_{2,2}(X)$ with $h=f$ in $X\setminus\Omega$. We show that such a solution always exists and that this solution is unique. We also show that the solution is locally H\"older continuous on $\Omega$, and satisfies a non-local maximum and strong maximum principle. Part of the results in this paper extend the work of Caffarelli and Silvestre in the Euclidean setting and Franchi and Ferrari in Carnot groups.<br />Comment: 42 pages, comments welcome, submitted. Revision to add crucial references and attributions to the introduction
- Subjects :
- Primary: 31E05, Secondary: 35A15, 50C25, 35J70
Hölder condition
Metric measure space
01 natural sciences
Fractional Laplacian
Combinatorics
010104 statistics & probability
Mathematics - Analysis of PDEs
Mathematics - Metric Geometry
Traces and extensions
FOS: Mathematics
Uniqueness
0101 mathematics
Besov space
Existence and uniqueness for Dirichlet problem
Mathematics
Dirichlet problem
Applied Mathematics
010102 general mathematics
Metric Geometry (math.MG)
Dirichlet's energy
Metric space
Bounded function
Laplace operator
Analysis
Strong maximum principle
Analysis of PDEs (math.AP)
Subjects
Details
- ISSN :
- 00220396
- Volume :
- 306
- Database :
- OpenAIRE
- Journal :
- Journal of Differential Equations
- Accession number :
- edsair.doi.dedup.....704d4ca44de73102e6669b1f8dbab097
- Full Text :
- https://doi.org/10.1016/j.jde.2021.10.029