Back to Search Start Over

Spatial vs. temporal features in ICA of resting-state fMRI - A quantitative and qualitative investigation in the context of response inhibition

Authors :
Yu-Feng Zang
Stephen M. Smith
Lixia Tian
Gaël Varoquaux
Yazhuo Kong
Juejing Ren
Department of Biomedical Engineering
Beijing Jiaotong University (BJTU)
Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB)
University of Oxford [Oxford]
State Key Laboratory of Cognitive Neuroscience and Learning
Beijing Normal University (BNU)
Modelling brain structure, function and variability based on high-field MRI data (PARIETAL)
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Service NEUROSPIN (NEUROSPIN)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Center for Cognition and Brain Disorders
Hangzhou Normal University
University of Oxford
Service NEUROSPIN (NEUROSPIN)
Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Source :
PLoS ONE, Vol 8, Iss 6, p e66572 (2013), PLoS ONE, PLoS ONE, Public Library of Science, 2013, ⟨10.1371/journal.pone.0066572⟩, PLoS ONE, 2013, ⟨10.1371/journal.pone.0066572⟩
Publication Year :
2013

Abstract

International audience; Independent component analysis (ICA) can identify covarying functional networks in the resting brain. Despite its relatively widespread use, the potential of the temporal information (unlike spatial information) obtained by ICA from resting state fMRI (RS-fMRI) data is not always fully utilized. In this study, we systematically investigated which features in ICA of resting-state fMRI relate to behaviour, with stop signal reaction time (SSRT) in a stop-signal task taken as a test case. We did this by correlating SSRT with the following three kinds of measure obtained from RS-fMRI data: (1) the amplitude of each resting state network (RSN) (evaluated by the standard deviation of the RSN timeseries), (2) the temporal correlation between every pair of RSN timeseries, and (3) the spatial map of each RSN. For multiple networks, we found significant correlations not only between SSRT and spatial maps, but also between SSRT and network activity amplitude. Most of these correlations are of functional interpretability. The temporal correlations between RSN pairs were of functional significance, but these correlations did not appear to be very sensitive to finding SSRT correlations. In addition, we also investigated the effects of the decomposition dimension, spatial smoothing and Z-transformation of the spatial maps, as well as the techniques for evaluating the temporal correlation between RSN timeseries. Overall, the temporal information acquired by ICA enabled us to investigate brain function from a complementary perspective to the information provided by spatial maps.

Details

Language :
English
ISSN :
19326203
Volume :
8
Issue :
6
Database :
OpenAIRE
Journal :
PloS ONE
Accession number :
edsair.doi.dedup.....704f249c78a9d1cd5f85eab00d0ec4c3