Back to Search Start Over

Chromosomal reinsertion of broken RSS ends during T cell development

Authors :
Jayne S. Danska
Lauryl M. J. Nutter
Mark S. Schlissel
Cynthia J. Guidos
André Nussenzweig
Danae Schulz
John D. Curry
Source :
The Journal of Experimental Medicine
Publication Year :
2007
Publisher :
The Rockefeller University Press, 2007.

Abstract

The V(D)J recombinase catalyzes DNA transposition and translocation both in vitro and in vivo. Because lymphoid malignancies contain chromosomal translocations involving antigen receptor and protooncogene loci, it is critical to understand the types of “mistakes” made by the recombinase. Using a newly devised assay, we characterized 48 unique TCRβ recombination signal sequence (RSS) end insertions in murine thymocyte and splenocyte genomic DNA samples. Nearly half of these events targeted “cryptic” RSS-like elements. In no instance did we detect target-site duplications, which is a hallmark of recombinase-mediated transposition in vitro. Rather, these insertions were most likely caused by either V(D)J recombination between a bona fide RSS and a cryptic RSS or the insertion of signal circles into chromosomal loci via a V(D)J recombination-like mechanism. Although wild-type, p53, p53 x scid, H2Ax, and ATM mutant thymocytes all showed similar levels of RSS end insertions, core-RAG2 mutant thymocytes showed a sevenfold greater frequency of such events. Thus, the noncore domain of RAG2 serves to limit the extent to which the integrity of the genome is threatened by mistargeting of V(D)J recombination.

Details

Language :
English
ISSN :
15409538 and 00221007
Volume :
204
Issue :
10
Database :
OpenAIRE
Journal :
The Journal of Experimental Medicine
Accession number :
edsair.doi.dedup.....70518f597b1614b6baf53fc10e1716a0