Back to Search Start Over

Self-splicing introns in tRNA genes of widely divergent bacteria

Authors :
David A. Shub
Barbara Reinhold-Hurek
Source :
Nature. 357:173-176
Publication Year :
1992
Publisher :
Springer Science and Business Media LLC, 1992.

Abstract

The organization of eukaryotic genes into exons separated by introns has been considered as a primordial arrangement but because it does not exist in eubacterial genomes it may be that introns are relatively recent acquisitions. A self-splicing group I intron has been found in cyanobacteria at the same position of the same gene (that encoding leucyl transfer RNA, UAA anticodon) as a similar group I intron of chloroplasts, which indicates that this intron predates the invasion of eukaryotic cells by cyanobacterial endosymbionts. But it is not clear from this isolated example whether introns are more generally present in different genes or in more diverse branches of the eubacteria. Many mitochondria have intron-rich genomes and were probably derived from the alpha subgroup of the purple bacteria (or Proteobacteria), so ancient introns might also have been retained in these bacteria. We describe here the discovery of two small (237 and 205 nucleotides) self-splicing group I introns in members of two proteobacterial subgroups, Agrobacterium tumefaciens (alpha) and Azoarcus sp. (beta). The introns are inserted in genes for tRNA(Arg) and tRNA(Ile), respectively, after the third anticodon nucleotide. Their occurrence in different genes of phylogenetically diverse bacteria indicates that group I introns have a widespread distribution among eubacteria.

Details

ISSN :
14764687 and 00280836
Volume :
357
Database :
OpenAIRE
Journal :
Nature
Accession number :
edsair.doi.dedup.....7068423740767896c5bf5c74eccaea26
Full Text :
https://doi.org/10.1038/357173a0