Back to Search Start Over

Universal fluctuations and ergodicity of generalized diffusivity on critical percolation clusters

Authors :
Adrian Pacheco-Pozo
Igor Sokolov
Source :
Journal of Physics A: Mathematical and Theoretical. 55:345001
Publication Year :
2022
Publisher :
IOP Publishing, 2022.

Abstract

Despite a long history and a clear overall understanding of properties of random walks on an incipient infinite cluster in percolation, some important information on it seems to be missing in the literature. In the present work, we revisit the problem by performing massive numerical simulations for (sub)diffusion of particles on such clusters. Thus, we discuss the shape of the probability density function (PDF) of particles' displacements, and the way it converges to its long-time limiting scaling form. Moreover, we discuss the properties of the mean squared displacement (MSD) of a particle diffusing on the infinite cluster at criticality. This one is known not to be self-averaging. We show that the fluctuations of the MSD in different realizations of the cluster are universal, and discuss the properties of the distribution of these fluctuations. These strong fluctuations coexist with the ergodicity of subdiffusive behavior in the time domain. The dependence of the relative strength of fluctuations in time-averaged MSD on the total trajectory length (total simulation time) is characteristic for diffusion in a percolation system and can be used as an additional test to distinguish this process with disorder-induced memory from processes with otherwise similar behavior, like fractional Brownian motion with the same value of the Hurst exponent.<br />Comment: 15 pages, 5 figures

Details

ISSN :
17518121 and 17518113
Volume :
55
Database :
OpenAIRE
Journal :
Journal of Physics A: Mathematical and Theoretical
Accession number :
edsair.doi.dedup.....707147dbfab27ead0bb5d6beadd0ba99
Full Text :
https://doi.org/10.1088/1751-8121/ac818f