Back to Search Start Over

Role of Electron Correlation along the Water Splitting Reaction

Authors :
Leonardo Guidoni
Emanuele Coccia
Shi-Bing Chu
Matteo Barborini
Chu, Shibing
Coccia, Emanuele
Barborini, Matteo
Guidoni, Leonardo
Source :
Journal of chemical theory and computation (Online) 12 (2016): 5803–5810. doi:10.1021/acs.jctc.6b00632, info:cnr-pdr/source/autori:Chu S.; Coccia E.; Barborini M.; Guidoni L./titolo:Role of Electron Correlation along the Water Splitting Reaction/doi:10.1021%2Facs.jctc.6b00632/rivista:Journal of chemical theory and computation (Online)/anno:2016/pagina_da:5803/pagina_a:5810/intervallo_pagine:5803–5810/volume:12, Europe PubMed Central
Publication Year :
2016
Publisher :
American Chemical Society, Washington, D.C. , Stati Uniti d'America, 2016.

Abstract

Electron correlation plays a crucial role in the energetics of reactions catalyzed by transition metal complexes, such as water splitting. In the present work we exploit the performance of various methods to describe the thermodynamics of a simple but representative model of water splitting reaction, based on a single cobalt ion as catalyst. Density Functional Theory (DFT) calculations show a significant dependence on the adopted functional, and not negligible differences with respect to CCSD(T) findings are found along the reaction cycle. We performed quantum Monte Carlo calculations using an unrestricted single Slater determinant wave function multiplied by a Jastrow factor using both DFT and fully optimized orbitals. Variational and Lattice Regularized Diffusion Monte Carlo results are in overall agreement with the CCSD(T) free-energy profile, even though differences in the description of the thermodynamics of the reaction cycle are found. NEVPT2 calculations reveal that the role of the static correlation of the different reaction steps is not large, and it is limited to only a few intermediate structures. Finally, the free-energy difference of the overall water splitting reaction computed at the quantum Monte Carlo level shows an excellent match with the experimental value of 4.92 eV, underlining the capability of these techniques to properly describe the dynamical correlation of such reactions.

Details

Language :
English
Database :
OpenAIRE
Journal :
Journal of chemical theory and computation (Online) 12 (2016): 5803–5810. doi:10.1021/acs.jctc.6b00632, info:cnr-pdr/source/autori:Chu S.; Coccia E.; Barborini M.; Guidoni L./titolo:Role of Electron Correlation along the Water Splitting Reaction/doi:10.1021%2Facs.jctc.6b00632/rivista:Journal of chemical theory and computation (Online)/anno:2016/pagina_da:5803/pagina_a:5810/intervallo_pagine:5803–5810/volume:12, Europe PubMed Central
Accession number :
edsair.doi.dedup.....7083c54fd29de92c68234fdd474c00a9
Full Text :
https://doi.org/10.1021/acs.jctc.6b00632