Back to Search Start Over

Manifolds Pinned by a High-Dimensional Random Landscape: Hessian at the Global Energy Minimum

Authors :
Yan V. Fyodorov
Pierre Le Doussal
Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023))
Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Champs Aléatoires et Systèmes hors d'Équilibre
Laboratoire de physique de l'ENS - ENS Paris (LPENS)
Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
School of Mathematical Sciences [London]
Queen Mary University of London (QMUL)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Source :
Phys.Rev.E, Phys.Rev.E, 2020, 101 (2), pp.020101. ⟨10.1103/PhysRevE.101.020101⟩, Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, Physical Review E : Statistical, Nonlinear, and Soft Matter Physics, American Physical Society, 2020, 101 (2), pp.020101. ⟨10.1103/PhysRevE.101.020101⟩, Journal of Statistical Physics, Journal of Statistical Physics, Springer Verlag, 2020, 179 (1), pp.176-215. ⟨10.1007/s10955-020-02522-2⟩
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

We consider an elastic manifold of internal dimension $d$ and length $L$ pinned in a $N$ dimensional random potential and confined by an additional parabolic potential of curvature $\mu$. We are interested in the mean spectral density $\rho(\lambda)$ of the Hessian matrix $K$ at the absolute minimum of the total energy. We use the replica approach to derive the system of equations for $\rho(\lambda)$ for a fixed $L^d$ in the $N \to \infty$ limit extending $d=0$ results of our previous work. A particular attention is devoted to analyzing the limit of extended lattice systems by letting $L\to \infty$. In all cases we show that for a confinement curvature $\mu$ exceeding a critical value $\mu_c$, the so-called "Larkin mass", the system is replica-symmetric and the Hessian spectrum is always gapped (from zero). The gap vanishes quadratically at $\mu\to \mu_c$. For $\mu<br />Comment: 44 pages, 5 figures

Details

ISSN :
15729613, 00224715, 15393755, and 15502376
Volume :
179
Database :
OpenAIRE
Journal :
Journal of Statistical Physics
Accession number :
edsair.doi.dedup.....70cd828d95d3f9c34db51d16bfb22196