Back to Search Start Over

Measuring bee diversity in different European habitats and biogeographical regions

Authors :
Hajnalka Szentgyörgyi
Gabriel Carré
Nicolas Morison
Michal Woyciechowski
Thomas Tscheulin
William E. Kunin
Catrin Westphal
Stuart P. M. Roberts
Josef Settele
Ellen Lamborn
Simon G. Potts
Ingolf Steffan-Dewenter
Jacobus C. Biesmeijer
Riccardo Bommarco
Theodora Petanidou
Bernard E. Vaissière
University of Bayreuth
Department of Ecology
Swedish University of Agricultural Sciences (SLU)
Abeilles et Environnement (AE)
Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU)
University of the Aegean
University of Reading (UOR)
Institute of Environmental Sciences
Uniwersytet Jagielloński w Krakowie = Jagiellonian University (UJ)
Institute of Integrative and Comparative Biology
University of Leeds
Department of Community Ecology
Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ)
Source :
Ecological monographs, Ecological monographs, Ecological Society of America, 2008, 78 (4), pp.653-671. ⟨10.1890/07-1292.1⟩
Publication Year :
2008
Publisher :
HAL CCSD, 2008.

Abstract

International audience; Bee pollinators are currently recorded with many different sampling methods. However, the relative performances of these methods have not been systematically evaluated and compared. In response to the strong need to record ongoing shifts in pollinator diversity and abundance, global and regional pollinator initiatives must adopt standardized sampling protocols when developing large-scale and long-term monitoring schemes. We systematically evaluated the performance of six sampling methods (observation plots, pan traps, standardized and variable transect walks, trap nests with reed internodes or paper tubes) that are commonly used across a wide range of geographical regions in Europe and in two habitat types (agricultural and seminatural). We focused on bees since they represent the most important pollinator group worldwide. Several characteristics of the methods were considered in order to evaluate their performance in assessing bee diversity: sample coverage, observed species richness, species richness estimators, collector biases (identified by subunit-based rarefaction curves), species composition of the samples, and the indication of overall bee species richness (estimated from combined total samples). The most efficient method in all geographical regions, in both the agricultural and seminatural habitats, was the pan trap method. It had the highest sample coverage, collected the highest number of species, showed negligible collector bias, detected similar species as the transect methods, and was the best indicator of overall bee species richness. The transect methods were also relatively efficient, but they had a significant collector bias. The observation plots showed poor performance. As trap nests are restricted to cavity-nesting bee species, they had a naturally low sample coverage. However, both trap nest types detected additional species that were not recorded by any of the other methods. For large-scale and long-term monitoring schemes with surveyors with different experience levels, we recommend pan traps as the most efficient, unbiased, and cost-effective method for sampling bee diversity. Trap nests with reed internodes could be used as a complementary sampling method to maximize the numbers of collected species. Transect walks are the principal method for detailed studies focusing on plant–pollinator associations. Moreover, they can be used in monitoring schemes after training the surveyors to standardize their collection skills.

Details

Language :
English
ISSN :
00129615
Database :
OpenAIRE
Journal :
Ecological monographs, Ecological monographs, Ecological Society of America, 2008, 78 (4), pp.653-671. ⟨10.1890/07-1292.1⟩
Accession number :
edsair.doi.dedup.....70d37968dc73c99a7aea0db9a7ae735c
Full Text :
https://doi.org/10.1890/07-1292.1⟩