Back to Search Start Over

Influence of bottom roughness and ambient pressure conditions on the emplacement of experimental dam-break granular flows

Authors :
Lady Ordoñez
Olivier Roche
Santiago Montserrat
Aldo Tamburrino
Advanced Mining Technology Center (AMTC)
Universidad de Chile = University of Chile [Santiago] (UCHILE)
DEPARTAMENTO DE INGENIERIA CIVIL UNIVERSIDAD DE SANTIAGO DE CHILE CHL
Partenaires IRSTEA
Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
Laboratoire Magmas et Volcans (LMV)
Institut national des sciences de l'Univers (INSU - CNRS)-Institut de Recherche pour le Développement et la société-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Observatoire de Physique du Globe de Clermont-Ferrand (OPGC)
Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA)
ANR-10-LABX-0006,CLERVOLC,Clermont-Ferrand centre for research on volcanism(2010)
ANR-16-IDEX-0001,CAP 20-25,CAP 20-25(2016)
Source :
Granular Matter, Granular Matter, 2021, 23 (3), ⟨10.1007/s10035-021-01125-2⟩, Granular Matter, Springer Verlag, 2021, 23 (3), ⟨10.1007/s10035-021-01125-2⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Geophysical granular flows occur at the surface of the Earth and other planets with reduced atmospheric pressure. In this paper, we investigate the run-out of dam-break flows of particle-air mixtures with fine ( $$d=75\,\upmu {\hbox {m}}$$ ) or coarse ( $$d=150\,\upmu {\hbox {m}}$$ ) grains in a flume with different bottom roughness ( $$\delta$$ ) and vacuum degrees ( $$P^*$$ ). Our results reveal an increase of the flow run-out as $$d/\delta$$ decreases for fine $$d=75 \,\upmu {\hbox {m}}$$ -particles, and run-out decreases with the dimensionless ambient pressure ( $$P^*$$ ) for a given $$d/\delta$$ . In contrast, the run-out for coarser $$d=150\,\upmu {\hbox {m}}$$ -particles, is almost invariant respect to $$P^*$$ and $$d/\delta$$ . These results show that autofluidization of fine-grained flows demonstrated by earlier works at ambient pressure also occurs at reduced pressure though being less efficient. Hence, autofluidization is a mechanism, among others, to explain long run-out of geophysical flows in different environments.

Details

Language :
English
ISSN :
14345021 and 14347636
Database :
OpenAIRE
Journal :
Granular Matter, Granular Matter, 2021, 23 (3), ⟨10.1007/s10035-021-01125-2⟩, Granular Matter, Springer Verlag, 2021, 23 (3), ⟨10.1007/s10035-021-01125-2⟩
Accession number :
edsair.doi.dedup.....70f6f4994eb29d095a10cfd05283e03f
Full Text :
https://doi.org/10.1007/s10035-021-01125-2⟩