Back to Search
Start Over
Detection of epimuscular myofascial forces by Golgi tendon organs
- Source :
- Experimental Brain Research, Maas, H, Noort, W, Smilde, H A, Vincent, J A, Nardelli, P & Cope, T C 2022, ' Detection of epimuscular myofascial forces by Golgi tendon organs ', Experimental Brain Research, vol. 240, no. 1, pp. 147-158 . https://doi.org/10.1007/s00221-021-06242-1, Experimental Brain Research, 240(1), 147-158. Springer Verlag
- Publication Year :
- 2022
-
Abstract
- Skeletal muscles embed multiple tendon organs, both at the proximal and distal ends of muscle fibers. One of the functions of such spatial distribution may be to provide locally unique force feedback, which may become more important when stresses are distributed non-uniformly within the muscle. Forces exerted by connections between adjacent muscles (i.e. epimuscular myofascial forces) may cause such local differences in force. The aim of this exploratory study was to investigate the effects of mechanical interactions between adjacent muscles on sensory encoding by tendon organs. Action potentials from single afferents were recorded intra-axonally in response to ramp-hold release (RHR) stretches of a passive agonistic muscle at different lengths or relative positions of its passive synergist. The tendons of gastrocnemius (GAS), plantaris (PL) and soleus (SO) muscles were cut from the skeleton for attachment to servomotors. Connective tissues among these muscles were kept intact. Lengthening GAS + PL decreased the force threshold of SO tendon organs (p = 0.035). The force threshold of lateral gastrocnemius (LG) tendon organs was not affected by SO length (p = 0.371). Also displacing LG + PL, kept at a constant muscle–tendon unit length, from a proximal to a more distal position resulted in a decrease in force threshold of LG tendon organs (p = 0.007). These results indicate that tendon organ firing is affected by changes in length and/or relative position of adjacent synergistic muscles. We conclude that tendon organs can provide the central nervous system with information about local stresses caused by epimuscular myofascial forces.
- Subjects :
- Sensory system
Primary afferent
Tendons
symbols.namesake
medicine
Animals
Humans
Rats, Wistar
Golgi tendon organ
Muscle, Skeletal
Proprioception
Chemistry
General Neuroscience
Anatomy
Golgi apparatus
musculoskeletal system
Skeleton (computer programming)
Biomechanical Phenomena
Rats
Tendon
medicine.anatomical_structure
symbols
Rat
Tendon organ
Mechanoreceptors
Research Article
Muscle Contraction
Lateral gastrocnemius
Myofascial force transmission
Subjects
Details
- Language :
- English
- ISSN :
- 00144819
- Volume :
- 240
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Experimental Brain Research
- Accession number :
- edsair.doi.dedup.....713d79c32912b70a0b2a53fda24cb1a6