Back to Search Start Over

Imatinib inhibits SARS-CoV-2 infection by an off-target-mechanism

Authors :
Romano Strobelt
Julia Adler
Nir Paran
Yfat Yahalom-Ronen
Sharon Melamed
Boaz Politi
Ziv Shulman
Dominik Schmiedel
Yosef Shaul
Publica
Source :
Scientific reports. 12(1)
Publication Year :
2021

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causal agent of the COVID-19 pandemic. More than 274 million individuals have suffered from COVID-19 and over five million people have died from this disease so far. Therefore, there is an urgent need for therapeutic drugs. Repurposing FDA approved drugs should be favored since evaluation of safety and efficacy of de-novo drug design are both costly and time consuming. We report that imatinib, an Abl tyrosine kinase inhibitor, robustly decreases SARS-CoV-2 infection and uncover a mechanism of action. We show that imatinib inhibits the infection of SARS-CoV-2 and its surrogate lentivector pseudotype. In latter, imatinib inhibited both routes of viral entry, endocytosis and membrane-fusion. We utilized a system to quantify in real-time cell–cell membrane fusion mediated by the SARS-CoV-2 surface protein, Spike, and its receptor, hACE2, to demonstrate that imatinib inhibits this process in an Abl1 and Abl2 independent manner. Furthermore, cellular thermal shift assay revealed a direct imatinib-Spike interaction that affects Spike susceptibility to trypsin digest. Collectively, our data suggest that imatinib inhibits Spike mediated viral entry by an off-target mechanism. These findings mark imatinib as a promising therapeutic drug in inhibiting the early steps of SARS-CoV-2 infection.

Details

ISSN :
20452322
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Scientific reports
Accession number :
edsair.doi.dedup.....717fd38a25afce232214da93b1ce719e