Back to Search
Start Over
Asymptotic normality of the Nadaraya–Watson estimator for nonstationary functional data and applications to telecommunications
- Source :
- JOURNAL OF NONPARAMETRIC STATISTIC, Artículos CONICYT, CONICYT Chile, instacron:CONICYT
- Publication Year :
- 2009
- Publisher :
- Informa UK Limited, 2009.
-
Abstract
- We study a nonparametric regression model, where the explanatory variable is nonstationary dependent functional data and the response variable is scalar. Assuming that the explanatory variable is a nonstationary mixture of stationary processes and general conditions of dependence of the observations (implied in particular by weak dependence), we obtain the asymptotic normality of the Nadaraya–Watson estimator. Under some additional regularity assumptions on the regression function, we obtain asymptotic confidence intervals for the regression function. We apply this result to estimate the quality of service for an end-to-end connection on a network.
- Subjects :
- Statistics and Probability
Statistics::Theory
Statistics::Applications
Regression function
Scalar (mathematics)
Estimator
Asymptotic distribution
Confidence interval
Statistics::Computation
Nonparametric regression
Econometrics
Statistics::Methodology
Applied mathematics
Statistics, Probability and Uncertainty
Mathematics
Subjects
Details
- ISSN :
- 10290311 and 10485252
- Volume :
- 21
- Database :
- OpenAIRE
- Journal :
- Journal of Nonparametric Statistics
- Accession number :
- edsair.doi.dedup.....71ab9edcfce86837652dde5aef0df749
- Full Text :
- https://doi.org/10.1080/10485250902878655