Back to Search Start Over

State Estimation for Stochastic Time Varying Systems with Disturbance Rejection

Authors :
Liangquan Zhang
Qinghua Zhang
Statistical Inference for Structural Health Monitoring (I4S)
Département Composants et Systèmes (IFSTTAR/COSYS)
PRES Université Lille Nord de France-PRES Université Nantes Angers Le Mans (UNAM)-Université de Lyon-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-PRES Université Lille Nord de France-PRES Université Nantes Angers Le Mans (UNAM)-Université de Lyon-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Inria Rennes – Bretagne Atlantique
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université de Lyon-PRES Université Nantes Angers Le Mans (UNAM)-PRES Université Lille Nord de France-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université de Lyon-PRES Université Nantes Angers Le Mans (UNAM)-PRES Université Lille Nord de France-Inria Rennes – Bretagne Atlantique
Source :
SYSID 2018-18th IFAC Symposium on System Identification, SYSID 2018-18th IFAC Symposium on System Identification, Jul 2018, Stockholm, Sweden. pp.55-59, ⟨10.1016/j.ifacol.2018.09.090⟩
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

International audience; State estimation in the presence of unknown disturbances is useful for the design of robust systems in different engineering fields. Most results available on this topic are restricted to linear time invariant (LTI) systems, whereas linear time varying (LTV) systems have been studied to a lesser extent. Existing results on LTV systems are mainly based on the minimization of the state estimation error covariance, ignoring the important issue of the stability of the state estimation error dynamics, which has been a main focus of the studies in the LTI case. The purpose of this paper is to propose a numerically efficient algorithm for state estimation with disturbance rejection, in the general framework of LTV stochastic systems, including linear parameter varying (LPV) systems, with easily checkable conditions guaranteeing the stability of the algorithm. The design method is conceptually simple: disturbance is first rejected from the state equation by appropriate output injection, then the Kalman filter is applied to the resulting state-space model after the output injection.

Details

Language :
English
Database :
OpenAIRE
Journal :
SYSID 2018-18th IFAC Symposium on System Identification, SYSID 2018-18th IFAC Symposium on System Identification, Jul 2018, Stockholm, Sweden. pp.55-59, ⟨10.1016/j.ifacol.2018.09.090⟩
Accession number :
edsair.doi.dedup.....7223b638f108bec1996e9dfe7c237d0a