Back to Search Start Over

A Reinforcement-Learning-Based Approach to Enhance Exhaustive Protein Loop Sampling

Authors :
Juan Cortés
Marc Vaisset
Thierry Simeon
Amélie Barozet
Kevin Molloy
Équipe Robotique et InteractionS (LAAS-RIS)
Laboratoire d'analyse et d'architecture des systèmes (LAAS)
Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
Service Informatique : Développement, Exploitation et Assistance (LAAS-IDEA)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
Source :
Bioinformatics, Bioinformatics, Oxford University Press (OUP), 2020, 36 (4), pp.1099-1106. ⟨10.1093/bioinformatics/btz684⟩, Bioinformatics, 2020, 36 (4), pp.1099-1106. ⟨10.1093/bioinformatics/btz684⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Motivation Loop portions in proteins are involved in many molecular interaction processes. They often exhibit a high degree of flexibility, which can be essential for their function. However, molecular modeling approaches usually represent loops using a single conformation. Although this conformation may correspond to a (meta-)stable state, it does not always provide a realistic representation. Results In this paper, we propose a method to exhaustively sample the conformational space of protein loops. It exploits structural information encoded in a large library of three-residue fragments, and enforces loop-closure using a closed-form inverse kinematics solver. A novel reinforcement-learning-based approach is applied to accelerate sampling while preserving diversity. The performance of our method is showcased on benchmark datasets involving 9-, 12- and 15-residue loops. In addition, more detailed results presented for streptavidin illustrate the ability of the method to exhaustively sample the conformational space of loops presenting several meta-stable conformations. Availability and implementation We are developing a software package called MoMA (for Molecular Motion Algorithms), which includes modeling tools and algorithms to sample conformations and transition paths of biomolecules, including the application described in this work. The binaries can be provided upon request and a web application will also be implemented in the short future. Supplementary information Supplementary data are available at Bioinformatics online.

Details

Language :
English
ISSN :
13674803 and 13674811
Database :
OpenAIRE
Journal :
Bioinformatics, Bioinformatics, Oxford University Press (OUP), 2020, 36 (4), pp.1099-1106. ⟨10.1093/bioinformatics/btz684⟩, Bioinformatics, 2020, 36 (4), pp.1099-1106. ⟨10.1093/bioinformatics/btz684⟩
Accession number :
edsair.doi.dedup.....7257ff5ec5160504f5a46a0596145e9e