Back to Search Start Over

A Gaussian mixture representation of gesture kinematics for on-line Sign Language video annotation

Authors :
Fabio Martínez
Antoine Manzanera
Annelies Braffort
Michèle Gouiffès
Robotique et Vision (RV)
Unité d'Informatique et d'Ingénierie des Systèmes (U2IS)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
Architectures et Modèles pour l'Interaction (AMI)
Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI)
Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919)
Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11)-Université Paris Saclay (COmUE)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université - UFR d'Ingénierie (UFR 919)
Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Université Paris-Sud - Paris 11 (UP11)
Information, Langue Ecrite et Signée (ILES)
Manzanera, Antoine
Source :
International Symposium on Visual Computing ISVC'15, International Symposium on Visual Computing ISVC'15, Dec 2015, Las Vegas, United States, Advances in Visual Computing ISBN: 9783319278629, ISVC (2)
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

International audience; Sign languages (SLs) are visuo-gestural representations used by deaf communities. Recognition of SLs usually requires manual annotations, which are expert dependent, prone to errors and time consuming. This work introduces a method to support SL annotations based on a motion descriptor that characterizes dynamic gestures in videos. The proposed approach starts by computing local kinematic cues, represented as mixtures of Gaussians which together correspond to gestures with a semantic equivalence in the sign language corpora. At each frame, a spatial pyramid partition allows a fine-to-coarse sub-regional description of motion-cues distribution. Then for each sub-region, a histogram of motion-cues occurrence is built, forming a frame-gesture descriptor which can be used for on-line annotation. The proposed approach is evaluated using a bag-of-features framework, in which every frame-level histogram is mapped to an SVM. Experimental results show competitive results in terms of accuracy and time computation for a signing dataset.

Details

Language :
English
ISBN :
978-3-319-27862-9
ISBNs :
9783319278629
Database :
OpenAIRE
Journal :
International Symposium on Visual Computing ISVC'15, International Symposium on Visual Computing ISVC'15, Dec 2015, Las Vegas, United States, Advances in Visual Computing ISBN: 9783319278629, ISVC (2)
Accession number :
edsair.doi.dedup.....7294af168ac90503a29f4107ec2f9a4e