Back to Search
Start Over
Molecular Gas Filaments and Star-forming Knots Beneath an X-Ray Cavity in RXC J1504–0248
- Source :
- Astrophysical journal, 2018, Vol.863(2), pp.193 [Peer Reviewed Journal], The Astrophysical Journal, The Astrophysical Journal, American Astronomical Society, 2018, 863 (2), pp.193. ⟨10.3847/1538-4357/aad2e0⟩
- Publication Year :
- 2018
- Publisher :
- American Astronomical Society, 2018.
-
Abstract
- We present recent ALMA observations of the CO(1-0) and CO(3-2) emission lines in the brightest cluster galaxy of RXCJ1504.1$-$0248, which is one of the most extreme cool core clusters known. The central galaxy contains $1.9\times 10^{10}~M_{\odot}$ of molecular gas. The molecular gas morphology is complex and disturbed, showing no evidence for a rotationally-supported structure in equilibrium. $80\%$ of the gas is situated within the central 5 kpc of the galactic center, while the remaining gas is located in a 20 kpc long filament. The cold gas has likely condensed out of the hot atmosphere. The filament is oriented along the edge of a putative X-ray cavity, suggesting that AGN activity has stimulated condensation. This is enegetically feasible, although the morphology is not as conclusive as systems whose molecular filaments trail directly behind buoyant radio bubbles. The velocity gradient along the filament is smooth and shallow. It is only consistent with free-fall if it lies within $20^{\circ}$ of the plane of the sky. The abundance of clusters with comparably low velocities suggests that the filament is not free-falling. Both the central and filamentary gas are coincident with bright UV emission from ongoing star formation. Star formation near the cluster core is consistent with the Kennicutt-Schmidt law. The filament exhibits increased star formation surface densities, possibly resulting from either the consumption of a finite molecular gas supply or spatial variations in the CO-to-H$_2$ conversion factor.<br />15 pages, 10 figures, accepted in ApJ
- Subjects :
- [PHYS]Physics [physics]
Physics
Active galactic nucleus
010308 nuclear & particles physics
Star formation
Galactic Center
FOS: Physical sciences
Astronomy and Astrophysics
Astrophysics::Cosmology and Extragalactic Astrophysics
Astrophysics
Astrophysics - Astrophysics of Galaxies
01 natural sciences
Galaxy
Protein filament
Space and Planetary Science
Astrophysics of Galaxies (astro-ph.GA)
0103 physical sciences
Cluster (physics)
Emission spectrum
Brightest cluster galaxy
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
010303 astronomy & astrophysics
ComputingMilieux_MISCELLANEOUS
Astrophysics::Galaxy Astrophysics
Subjects
Details
- ISSN :
- 15384357 and 0004637X
- Volume :
- 863
- Database :
- OpenAIRE
- Journal :
- The Astrophysical Journal
- Accession number :
- edsair.doi.dedup.....72d36b201168dc90c2dd3eca12098d12
- Full Text :
- https://doi.org/10.3847/1538-4357/aad2e0