Back to Search Start Over

Developmentally Programmed 3′ CpG Island Methylation Confers Tissue- and Cell-Type-Specific Transcriptional Activation

Authors :
Lanlan Shen
Manasi Gadkari
Da-Hai Yu
Govindarajan Kunde-Ramamoorthy
Robert A. Waterland
Miao-Hsueh Chen
Jiexin Zhang
Carol B. Ware
Lagina M. Nosavanh
Source :
Molecular and Cellular Biology. 33:1845-1858
Publication Year :
2013
Publisher :
Informa UK Limited, 2013.

Abstract

During development, a small but significant number of CpG islands (CGIs) become methylated. The timing of developmentally programmed CGI methylation and associated mechanisms of transcriptional regulation during cellular differentiation, however, remain poorly characterized. Here, we used genome-wide DNA methylation microarrays to identify epigenetic changes during human embryonic stem cell (hESC) differentiation. We discovered a group of CGIs associated with developmental genes that gain methylation after hESCs differentiate. Conversely, erasure of methylation was observed at the identified CGIs during subsequent reprogramming to induced pluripotent stem cells (iPSCs), further supporting a functional role for the CGI methylation. Both global gene expression profiling and quantitative reverse transcription-PCR (RT-PCR) validation indicated opposing effects of CGI methylation in transcriptional regulation during differentiation, with promoter CGI methylation repressing and 3' CGI methylation activating transcription. By studying diverse human tissues and mouse models, we further confirmed that developmentally programmed 3' CGI methylation confers tissue- and cell-type-specific gene activation in vivo. Importantly, luciferase reporter assays provided evidence that 3' CGI methylation regulates transcriptional activation via a CTCF-dependent enhancer-blocking mechanism. These findings expand the classic view of mammalian CGI methylation as a mechanism for transcriptional silencing and indicate a functional role for 3' CGI methylation in developmental gene regulation.

Details

ISSN :
10985549
Volume :
33
Database :
OpenAIRE
Journal :
Molecular and Cellular Biology
Accession number :
edsair.doi.dedup.....72e06aba1d72d300757efab6a4e97814
Full Text :
https://doi.org/10.1128/mcb.01124-12