Back to Search
Start Over
Evolutionary history of the mariner element galluhop in avian genomes
- Source :
- Mobile DNA, Vol 8, Iss 1, Pp 1-10 (2017)
- Publication Year :
- 2017
- Publisher :
- Springer Science and Business Media LLC, 2017.
-
Abstract
- Background Transposable elements (TEs) are highly abundant genomic parasites in eukaryote genomes. Although several genomes have been screened for TEs, so far very limited information is available regarding avian TEs and their evolutionary histories. Taking advantage of the rich genomic data available for birds, we characterized the evolutionary history of the galluhop element, originally described in Gallus gallus, through the use of several bioinformatic analyses. Results galluhop homologous sequences were found in 6 of 72 genomes analyzed: 5 species of Galliformes (Gallus gallus, Meleagris gallopavo, Coturnix japonica, Colinus virginianus, Lyrurus tetrix) and one Buceritiformes (Buceros rhinoceros). The copy number ranged from 5 to 10,158, in the genomes of C. japonica and G. gallus respectively. All 6 species possessed short elements, suggesting the presence of Miniature Inverted repeats Transposable Elements (MITEs), which underwent an ancient massive amplification in the G. gallus and M. gallopavo genomes. Only 4 species showed potential MITE full-length partners, although no potential coding copies were detected. Phylogenetic analysis of reconstructed coding sequences showed that galluhop homolog sequences form a new mariner subfamily, which we termed Gallus. Inter-species and intragenomic galluhop distance analyses indicated a high identity between the consensus of B. rhinoceros and the other 5 related species, and different emergence ages of the element between the Galliformes species and B. rhinocerus, suggesting that horizontal transfer took place from Galliformes to a Buceritiformes ancestor, probably through an intermediate species. Conclusions Overall, our results showed that mariner elements have amplified to high copy numbers in some avian species, and that this transposition burst probably occurred in the common ancestor of G. gallus and M. gallopavo. In addition, although no coding sequences could be found currently, they probably existed, allowing an ancient massive MITE amplification in these 2 species. The other 4 species also have MITEs, suggesting that this new mariner family is prone to give rise to such non-autonomous derivatives. Last, our results suggest that a horizontal transfer event of a galluhop element occurred between Galliformes and Buceritiformes.
- Subjects :
- 0301 basic medicine
Galluhop
animal structures
Subfamily
Galliformes
lcsh:QH426-470
Phylogenetic tree
Inverted repeat
Mariner
Horizontal transfer
Colinus
Avian genome
Biology
biology.organism_classification
Genome
Genomic parasites
MITEs
lcsh:Genetics
03 medical and health sciences
030104 developmental biology
Evolutionary biology
Horizontal gene transfer
Molecular Biology
Meleagris gallopavo
Subjects
Details
- ISSN :
- 17598753
- Volume :
- 8
- Database :
- OpenAIRE
- Journal :
- Mobile DNA
- Accession number :
- edsair.doi.dedup.....730ffe624dacd22db7a53a151c41a305
- Full Text :
- https://doi.org/10.1186/s13100-017-0094-z