Back to Search Start Over

Asymptotics for eigenvalues of the laplacian in higher dimensional periodically perforated domains

Authors :
Jorge San Martín
Loredana Smaranda
Source :
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, Artículos CONICYT, CONICYT Chile, instacron:CONICYT
Publication Year :
2010
Publisher :
BIRKHAUSER VERLAG AG, 2010.

Abstract

This paper considers the periodic spectral problem associated with the Laplace operator written in \({\mathbb{R}^N}\) (N = 3, 4, 5) periodically perforated by balls, and with homogeneous Dirichlet condition on the boundary of holes. We give an asymptotic expansion for all simple eigenvalues as the size of holes goes to zero. As an application of this result, we use Bloch waves to find the classical strange term in homogenization theory, as the size of holes goes to zero faster than the microstructure period.

Details

Language :
English
Database :
OpenAIRE
Journal :
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, Artículos CONICYT, CONICYT Chile, instacron:CONICYT
Accession number :
edsair.doi.dedup.....731caf003ce34057eb6908bffc8d8f52