Back to Search Start Over

Adult-Born Hippocampal Neurons Undergo Extended Development and Are Morphologically Distinct from Neonatally-Born Neurons

Authors :
Desiree R Seib
Alyssa M Ash
Matthew B. Cooke
Sharon S. Kwan
Timothy P. O'Leary
Delane F Espinueva
Shaina P. Cahill
Jason S. Snyder
John Darby Cole
Source :
J Neurosci
Publication Year :
2020
Publisher :
Society for Neuroscience, 2020.

Abstract

During immature stages, adult-born neurons pass through critical periods for survival and plasticity. It is generally assumed that by 2 months of age adult-born neurons are mature and equivalent to the broader neuronal population, raising questions of how they might contribute to hippocampal function in old age when neurogenesis has declined. However, few have examined adult-born neurons beyond the critical period, or directly compared them to neurons born in infancy. Here, we used a retrovirus to visualize functionally-relevant morphological features of 2- to 24-week-old adult-born neurons in male rats. From 2-7 weeks neurons grew and attained a relatively mature phenotype. However, several features of 7-week-old neurons suggested a later wave of growth: these neurons had larger nuclei, thicker dendrites and more dendritic filopodia than all other groups. Indeed, between 7-24 weeks, adult-born neurons gained additional dendritic branches, grew a 2nd primary dendrite, acquired more mushroom spines and had enlarged mossy fiber presynaptic terminals. Compared to neonatally-born neurons, old adult-born neurons had greater spine density, larger presynaptic terminals, and more putative efferent filopodial contacts onto inhibitory neurons. By integrating rates of cell birth and growth across the lifespan, we estimate that adult neurogenesis ultimately produces half of the cells and the majority of spines in the dentate gyrus. Critically, protracted development contributes to the plasticity of the hippocampus through to the end of life, even after cell production declines. Persistent differences from neonatally-born neurons may additionally endow adult-born neurons with unique functions even after they have matured.SIGNIFICANCE STATEMENTNeurogenesis occurs in the hippocampus throughout adult life and contributes to memory and emotion. It is generally assumed that new neurons have the greatest impact on behavior when they are immature and plastic. However, since neurogenesis declines dramatically with age, it is unclear how they might contribute to behavior later in life when cell proliferation has slowed. Here we find that newborn neurons mature over many months in rats, and end up with distinct morphological features compared to neurons born in infancy. Using a mathematical model, we estimate that a large fraction of neurons is added in adulthood. Moreover, their extended growth produces a reserve of plasticity that persists even after neurogenesis has declined to low rates.

Details

ISSN :
15292401 and 02706474
Volume :
40
Database :
OpenAIRE
Journal :
The Journal of Neuroscience
Accession number :
edsair.doi.dedup.....732e23e78ce95bc6f3a37fea1a193184