Back to Search Start Over

Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation

Authors :
Guowei Yang
Jiandong Yao
Zhaoqiang Zheng
Source :
Nanoscale. 10:2876-2886
Publication Year :
2018
Publisher :
Royal Society of Chemistry (RSC), 2018.

Abstract

Solar energy-driven water evaporation lays a solid foundation for important photothermal applications such as sterilization, seawater desalination, and electricity generation. Due to the strong light-matter coupling, broad absorption wavelength range, and prominent quantum confinement effect, layered tin monoselenide (SnSe) holds a great potential to effectively harness solar irradiation and convert it to heat energy. In this study, SnSe is successfully deposited on a centimeter-scale nickel foam using a facile one-step pulsed-laser deposition approach. Importantly, the maximum evaporation rate of SnSe-coated nickel foam (SnSe@NF) reaches 0.85 kg m-2 h-1, which is even 21% larger than that obtained with the commercial super blue coating (0.7 kg m-2 h-1) under the same condition. A systematic analysis reveals that its good photothermal conversion capability is attributed to the synergetic effect of multi-scattering-induced light trapping and the optimal trade-off between light absorption and phonon emission. Finally, the SnSe@NF device is further used for seawater evaporation, demonstrating a comparable evaporation rate (0.8 kg m-2 h-1) to that of fresh water and good stability over many cycles of usage. In summary, the current contribution depicts a facile one-step scenario for the economical and efficient solar-enabled SnSe@NF evaporation devices. More importantly, an in-depth analysis of the photothermal conversion mechanism underneath the layered materials depicts a fundamental paradigm for the design and application of photothermal devices based on them in the future.

Details

ISSN :
20403372 and 20403364
Volume :
10
Database :
OpenAIRE
Journal :
Nanoscale
Accession number :
edsair.doi.dedup.....7335621fb583d8f98085253311b4416c
Full Text :
https://doi.org/10.1039/c7nr09229f