Back to Search Start Over

High-Throughput Developability Assays Enable Library-Scale Identification of Producible Protein Scaffold Variants

Authors :
Benjamin J. Hackel
Stefano Martiniani
Alexander W. Golinski
Sidharth Laxminarayan
Matthew Fossing
Katelynn M. Mischler
Nicole L. Neurock
Hannah Pichman
Source :
Proc Natl Acad Sci U S A
Publication Year :
2020
Publisher :
Cold Spring Harbor Laboratory, 2020.

Abstract

Proteins require high developability—quantified by expression, solubility, and stability—for robust utility as therapeutics, diagnostics, and in other biotechnological applications. Measuring traditional developability metrics is low throughput in nature, often slowing the developmental pipeline. We evaluated the ability of 10 variations of three high-throughput developability assays to predict the bacterial recombinant expression of paratope variants of the protein scaffold Gp2. Enabled by a phenotype/genotype linkage, assay performance for 10(5) variants was calculated via deep sequencing of populations sorted by proxied developability. We identified the most informative assay combination via cross-validation accuracy and correlation feature selection and demonstrated the ability of machine learning models to exploit nonlinear mutual information to increase the assays’ predictive utility. We trained a random forest model that predicts expression from assay performance that is 35% closer to the experimental variance and trains 80% more efficiently than a model predicting from sequence information alone. Utilizing the predicted expression, we performed a site-wise analysis and predicted mutations consistent with enhanced developability. The validated assays offer the ability to identify developable proteins at unprecedented scales, reducing the bottleneck of protein commercialization.

Details

Database :
OpenAIRE
Journal :
Proc Natl Acad Sci U S A
Accession number :
edsair.doi.dedup.....73ef81d4925d4f620639c93df5ba60fc
Full Text :
https://doi.org/10.1101/2020.12.14.422755