Back to Search
Start Over
A model of motion transparency processing with local center-surround interactions and feedback
- Source :
- Neural computation. 23(11)
- Publication Year :
- 2011
-
Abstract
- Motion transparency occurs when multiple coherent motions are perceived in one spatial location. Imagine, for instance, looking out of the window of a bus on a bright day, where the world outside the window is passing by and movements of passengers inside the bus are reflected in the window. The overlay of both motions at the window leads to motion transparency, which is challenging to process. Noisy and ambiguous motion signals can be reduced using a competition mechanism for all encoded motions in one spatial location. Such a competition, however, leads to the suppression of multiple peak responses that encode different motions, as only the strongest response tends to survive. As a solution, we suggest a local center-surround competition for population-encoded motion directions and speeds. Similar motions are supported, and dissimilar ones are separated, by representing them as multiple activations, which occurs in the case of motion transparency. Psychophysical findings, such as motion attraction and repulsion for motion transparency displays, can be explained by this local competition. Besides this local competition mechanism, we show that feedback signals improve the processing of motion transparency. A discrimination task for transparent versus opaque motion is simulated, where motion transparency is generated by superimposing large field motion patterns of either varying size or varying coherence of motion. The model’s perceptual thresholds with and without feedback are calculated. We demonstrate that initially weak peak responses can be enhanced and stabilized through modulatory feedback signals from higher stages of processing.
- Subjects :
- Opacity
Computer science
business.industry
Cognitive Neuroscience
Models, Neurological
Process (computing)
Motion Perception
Window (computing)
Brain
Models, Theoretical
Motion (physics)
Mechanism (engineering)
Arts and Humanities (miscellaneous)
Coherence (signal processing)
Animals
Humans
Computer vision
Transparency (data compression)
Motion perception
Artificial intelligence
business
Algorithms
Subjects
Details
- ISSN :
- 1530888X
- Volume :
- 23
- Issue :
- 11
- Database :
- OpenAIRE
- Journal :
- Neural computation
- Accession number :
- edsair.doi.dedup.....7402a31f33f4f8c51b838af692da36dc